• Title/Summary/Keyword: Model furnace

Search Result 322, Processing Time 0.03 seconds

An Experimental Study on the Swirling Flow Field in the Tangentially Fired Furnace (접선식 배치로내의 선회유동장에 관한 실험적 연구)

  • ;;;Yoon, S. H.;Sim, J. K.;Song, H. B.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3003-3013
    • /
    • 1995
  • The characteristics of the flow field in the tangentially fired furnace are presented. Experiments are conducted in the simplified cold type isothermal flow model. In the measurement of flow field, a hot wire anemometer is used. The hot wire was calibrated by lookup table method. The mean velocity field and turbulence characteristics are showed with changing the nozzle angle. In the center of the model, the low speed, unstable flow region is formed. The size and position of these regions are varied with changing the nozzle angle. It can be used as fundamental data in the design of the large furnace. From the experimental results, various turbulent characteristics of swirling flow field is obtained. And the entrainment mechanism of the jet flow field is described from the distribution of the skewness and the flatness. It can be used the raw data of approximate calculation and turbulent modelling.

Heat Transfer Analysis in High Efficiency Electric Melting Furnace (고효율/친환경 전기 용해로 내의 열전달 해석)

  • Seol, Dong-Il;Lee, Byung-Hwa;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2285-2290
    • /
    • 2007
  • The main objective of this study is to analyze the heat transfer characteristics in the electric melting furnace. Local temperatures are measured at various location in the furnace using the B-type thermocouples. In this paper, the numerical simulation was performed using the ANSYS software, and compared with experimental data. Mathematical heat transfer model for the prediction of temperature distribution has been developed by considering the thermal radiation among heating element, crucible and insulating materials. The results show that the temperature distributions predicted by the numerical simulation agree with experimental results comparatively.

  • PDF

Thyristor Rectifier for DC Arc Furnace with Enhanced Arc Stability

  • Jung, Kyungsub;Suh, Yongsug;Kim, Taewon;Park, Taejun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.498-499
    • /
    • 2011
  • In this paper, the fundamental features of the arc stability DC arc furnace have been investigated, from the converter point of view. To compare of measurement arc data from DC arc furnace and the advanced arc simulations of magneto-hydrodynamics (MHD) and the well known Cassie-Mayr arc model have been extensively used. The MHD based arc simulation has been validated in the subcomponent level, for the free burning arc set up in the laboratory. The arc simulation predicted the arc voltage for different currents with the accuracy which satisfies engineering requirements. It has been shown that the arc current steepness at current zero determines the arc stability, and the associated peak arc resistance can be used as its quantitative measure. Based on the presented insight into the DC arc stability, a converter topology solution which realizes an optimal arc stability has been proposed. The main results presented in this paper provide a design guideline for the future DC arc furnace converter topology developments.

  • PDF

Bed Combustion in a Furnace Enclosure - a Model for the MSW Incinerator

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2002
  • The bed combustion in an incinerator interacts with the gas flow region through heat and mass transfer. Combined bed combustion and gas flow simulations are performed to investigate this coupled interaction for various operating conditions and furnace configurations. Radiation onto the bed from the furnace is interrelated with the combustion characteristics in the bed, and is also affected by the flow pattern in the gas flow region. Since the contribution of gaseous emission to the total radiation is significant, an adequate flow pattern in a well-designed furnace shape would lead to an increased heat influx on the bed, especially in the early stage of the waste combustion. Advancing the initiation point of the waste combustion can also reduce the size of the lower gas temperature region above the bed, which can be achieved by controlling operating conditions such as the waste feeding rate, the bed height and the primary air flow distribution.

  • PDF

Generalized predictive control with exponential weight to control tempera-tures in ceramic drying furnace (세라믹 건조로 온도 제어를 위한 가중계수를 갖는 일반형 예측제어)

  • 임태규;성원준;금영탁;송창섭
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.6
    • /
    • pp.284-289
    • /
    • 2003
  • The electric furnace, inside which the desired temperature is kept by the generated heat, is known to be a difficult system to control and model exactly because system parameters and response delayed time are varied as the temperature and positions are changed. In this study, the GPCEW (generalized predictive control with exponential weight), which always guarantees the stability of the closed loop system and can be effectively applied to the internally unstable system, was introduced to the ceramic drying electric furnace and was verified by showing its temperature tracking performance experimentally.

Harmonics Analysis for Electric Arc Furnace According to the Operation Condition (전기 아크로 운전 상태에 따른 고조파 해석)

  • Kim, Jae-Chul;Park, Kyung-Ho;Park, Hyun-Teak;Moon, Jong-Fil;Im, Sang-Kug;Son, Hag-Sig
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.118-125
    • /
    • 2004
  • The use of electric arc furnace has been increasing as the steel consumption is increasing and the operation technique of electric arc furnace are developing. But as the use of electric arc furnace is increased, the furnace have produced the adverse effects of power quality: voltage and current harmonics, voltage and current imbalances, low power factor, and voltage flicker. One of the power quality problems, the harmonic have the characteristics of the time-varying and non-linear. This paper analyzed the harmonics for the various operation conditions of electric arc furnace. The power system model with electric arc furnace have been made, and the harmonic's effects on the power system has been analyzed according to the various operating conditions, first melting, second melting, so on. Also, the filter reducing the harmonic components have been designed and its effects on the power system have been examined.

Numerical Simulation of 3-Dimensional Fluid Flow and Dust Concentrations in a Steel Foundry (제강 작업장내 삼차원 유동장 및 먼지농도의 수치 모사)

  • Cho, Hyun-Ho;Hong, Mi-Ok;Cho, Seog-Yeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • The steel foundries with electric arc furnaces handling metal scraps have recently gained an attention as a potential source of dusts. The present study focuses on the analysis of dust emissions and removals during furnace charging and melting processes by commercial CFD software named FLUENT. A body fitted grid system consisting of 880,000 meshes was first generated by Gambit for the electric arc furnace with the capacity of 60 ton/cycle and then FLUENT was invoked to solve the corresponding NavierStokers equation for the momentum, temperature and dust concentration. The entire processes from metal charging to metal melting were simulated to investigate the unsteady behaviors of fluid flows and dust concentrations. The model simulation results showed that as the top of the electric arc furnace opened for metal charging, hot plumes bursted out from the furnace rose strongly by buoyance and escaped mostly through the main hood. Therefore, the capacity of main hoods determined the vent efficiency in the metal charging process. As the furnace was closed after the metal charging and the metal melting processes was followed, the hot flow stream stretching from the furnace to the main hood was dissipated fast and the flow from the inlet of the bottom of the left hand side to the main and monitoring hoods constituted the main stream. And there was only a slow flow in the right hand side of the furnace. Therefore, the dust concentrations were calculated higher in the left hand side of the furnace, which was consistent with observations.

Strip Tension Control Considering the Temperature Change in Multi-Span Systems

  • Lee Chang Woo;Shin Kee Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.958-967
    • /
    • 2005
  • The mathematical model for tension behaviors of a moving web by Shin (2000) is extended to the tension model considering the thermal strain due to temperature variation in furnace. The extended model includes the terms that take into account the effect of the change of the Young's Modulus, the thermal coefficient, and the thermal strain on the variation of strip tension. Computer simulation study proved that the extended tension model could be used to analyze tension behaviors even when the strip goes through temperature variation. By using the extended tension model, a new tension control method is suggested in this paper. The key factors of suggested tension control method include that the thermal strain of strip could be compensated by using the velocity adjustment of the helper-rollers. The computer simulation was carried out to confirm the performance of the suggested tension control method. Simulation results show that the suggested tension control logic not only overcomes the problem of the traditional tension control logic, but also improves the performance of tension control in a furnace of the CAL (Continuous Annealing Line).

The Evaluation of Temperature History in Concrete by Using Cement Hydration Model (수화모델을 이용한 콘크리트의 초기온도 예측에 관한 연구)

  • Wang, Xiaoyong;Cho, Hyeong-Kyu;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.253-254
    • /
    • 2012
  • In this study, it carried out measurement experiment Ca(OH)2 and chemically bound water to verify Ca(OH)2 and chemically bound water prediction model out of hydration model of cement incorporating blast furnace slag. It compared and analyzed prediction results using prediction model with measurement results of Ca(OH)2 quantity using thermogravimetric differential temperature analysis and chemically bound water quantity using electronic furnace. It agrees well experiments results with prediction results.

  • PDF

A study on the pollutant reduction using catalyst in model furnace (모형소각로의 촉매에 의한 배기가스 정화특성에 관한 연구)

  • Lee, Yong-Hoo;Lee, Wha-Sin;Lee, Jin-Seok;Lee, Do-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.870-876
    • /
    • 2006
  • In proportion to the increase of industrial development, emission troubles were concerned as global issue. For these reasons, so many researchers and associated institutes effort to reduce pollution with new technology and various devices. As a kind of these methods, we used catalysts as a after-treatment system. At first, we made equipment of model furnace. And various catalysts were equipped at exhaust duct of combustion system, and excess air ratio(a), change cell numbers catalyst materials(Pt, Pd) were changed as experimental conditions. With these various condition, temperature. NOx, CO, HC, $CO_2$ and $O_2$ concentration were measured. As a result, NOx conversion increased with increasing of cell number in Pd catalyst. And Pt catalyst became 100% conversion at 200 and 300 cell. Also, Pt catalyst was better than Pd catalyst at a=1.5 in this condition. In addition, CO and HC concentrations were decreased at a = 1.5 with Pd catalyst.