• Title/Summary/Keyword: Model furnace

Search Result 322, Processing Time 0.024 seconds

Mechanical Properties of Alkali-Activated Slag-Based Concrete Using Lightweight Aggregates (경량골재를 사용한 알칼리 활성 슬래그 콘크리트의 역학적 특성)

  • Yang, Keun-Hyeok;Oh, Seung-Jin;Song, Jin-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2008
  • Six alkali-activated (AA) concrete mixes were tested to explore the significance and limitations of developing an environmental friendly concrete. Ground granulated blast-furnace slag and powder typed sodium silicate were selected as source material and an alkaline activator, respectively. The main parameter investigated was the replacement level of lightweight fine aggregate to the natural sand. Workability and mechanical properties of lightweight AA concrete were measured: the variation of slump with time, the rate of compressive strength development, the splitting tensile strength, the moduli of rupture and elasticity, the stress-strain relationship, the bond resistance and shrinkage strain. Test results showed that the compressive strength of lightweight AA concrete sharply decreased when the replacement level of lightweight fine aggregate exceeded 30%. In particular, the increase in the discontinuous grading of lightweight aggregate resulted in the deterioration of the mechanical properties of concrete tested. The measured properties of lightweight AA concrete were also compared, wherever possible, with the results obtained from the design equations specified in ACI 318-05 or EC 2, depending on the relevance, and the results predicted from the empirical equations proposed by Slate et al. for lightweight ordinary Portland cement concrete. The stress-strain curves of different concrete were compared with predictions obtained from the mathematical model proposed by Tasnimi. The measured mechanical properties of lightweight AA concrete generally showed little agreement with the predictions obtained from these equations.

Photocurrent Study on the Splitting of the Valence Band and Growth of $AgInS_2$GaAs Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $AgInS_2$단결성 박막의 성장과 가전자대 갈라짐에대한 광전류 연구)

  • 홍광준
    • Korean Journal of Crystallography
    • /
    • v.12 no.4
    • /
    • pp.197-206
    • /
    • 2001
  • A stoichiometric mixture of evaporating materials for AgInS₂ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films. AgInS₂ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE)system. The source and substrate temperatures were 680℃ and 410℃, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of AgInS₂ single crystal thin film mea-sured from Hall effect by van der Pauw method are 9.35×10/sup 16/㎤ and 294㎠/V·s at 293K respectively. The temperature dependence of the energy band gap of the AgInS₂ obtained from the absorption spectra was well described by the Varshni's relation , E/sub g/(T)=2.1365eV-(9.89×10/sup-3/eV/K/)T²(T+2930K). The crystal field and the spin-orbit splitting energies for the valence band of the AgInS₂ have been estimated to be 0.1541eV and 0.0129 eV, respectively, by means of the photocur-rent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the Δso definitely exists in the Γ/sub 5/ states of the valence band of the AgInS₂ /GaAs epilayer. The three photo-current peaks ovserved at 10K are ascribed to the A₁-, B-₁and C₁-exction peaks for n=1.

  • PDF

Photocurrent Study on the Splitting of the Valence Band and Growth of CuAlSe2 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 CuAlSe2 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon;Park, Jin-Sun;Lee, Bong-Ju;Jeong, Jun-Woo;Bang, Jin-Ju;Kim, Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.157-167
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuAlSe_{2}$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_{2}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_{2}$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}cm^{-3}$ and $295cm^{2}/V{\codt}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_{2}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$ = 2.8382 eV - ($8.68{\circ}10^{-4}$ eV/K)$T^{2}$/(T + 155 K). The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_{2}$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{5}$ states of the valence band of the $CuAlSe_{2}$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-}$, $B_{1-}$, and $C_{1-}$ exciton peaks for n = 1.

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Hyangsook;Bang, Jinju;Lee, Kijung;Kang, Jongwuk;Hong, Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Photocurrent Study on the Splitting of the Valence Band and Growth of BaIn2Se4 epilayers by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaIn2Se4 에피레어 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Jeong, Junwoo;Lee, Kijeong;Jeong, Kyunga;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • A stoichiometric mixture of evaporating materials for $BaIn_2Se_4$ epilayers was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the epilayers was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2Se_4$ epilayers measured from Hall effect by van der Pauw method are $8.94{\times}10^{17}cm^{-3}$ and 343 $cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.6261 eV-$(4.9825{\times}10^{-3}eV/K)T^2/(T+558 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2Se_4$ have been estimated to be 116 meV and 175.9 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n=21.

Growth and Optical Conductivity Properties for BaAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 BaAl2Se4 단결정 박막 성장과 광전도 특성)

  • Jeong, Junwoo;Lee, Kijung;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.404-411
    • /
    • 2015
  • A stoichiometric mixture of evaporating materials for $BaAl_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaAl_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaAl_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.29{\times}10^{-16}cm^{-3}$ and $278cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaAl_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=3.4205eV-(4.3112{\times}10^{-4}eV/K)T^2/(T+232 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaAl_2Se_4$ have been estimated to be 249.4 meV and 263.4 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n =1 and $C_{31}$-exciton peaks for n=31.

Design of Naphtha Cracker Gas Splitter Process in Petlyuk Column (납사열분해 가스분리공정에서의 Petlyuk Column 설계)

  • Lee, Ju Yeong
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2020
  • Light Naphtha is distillated from crude oil unit and separated into the methane, ethylene and propylene by boiling point difference in sequence. This separation is conducted using a series of binary-like columns. This separation method is known that the energy consumed in the reboiler is used to separate the heaviest components and most of this energy is discarded as vapor condensation in the overhead cooler. In this study, the first two columns of the separation process are replaced with the Petlyuk column. A structural design was exercised by the stage computation with ideal tray efficiency in equilibrium condition. Compared with the performance of a conventional system of 3-column model, The design outcome shows that the procedure is simple and efficient because the composition of the liquid component in the column tray was designed to be similar to the equilibrium distillation curve. The performance of the new process indicates that an energy saving of 12.1% is obtained and the cost savings of 44 million won per day based on gross domestic product is reduced under same total number of trays and the initial investment cost is saved.

Assessment of Fire-Damaged Mortar using Color image Analysis (색도 이미지 분석을 이용한 화재 피해 모르타르의 손상 평가)

  • Park, Kwang-Min;Lee, Byung-Do;Yoo, Sung-Hun;Ham, Nam-Hyuk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.83-91
    • /
    • 2019
  • The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from $100^{\circ}C$ to $1000^{\circ}C$. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of $400^{\circ}C$. However there was a sudden decrease in strength at the temperature above $500^{\circ}C$, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature $700^{\circ}C$ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of $L^*a^*b$ color analysis show that $b^*$ increases rapidly after $700^{\circ}C$. It is analyzed that the intensity of yellow becomes strong after $700^{\circ}C$. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after $700^{\circ}C$. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow($b^*$ or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.

Photocurrent study on the splitting of the valence band and growth of MgGa2Se4 single crystal thin film by hot wall epitaxy (Hot Wall Epitaxy(HWE)법에 의한 MgGa2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Kim, Hyejeong;Park, Hwangseuk;Bang, Jinju;Kang, Jongwuk;Hong, Kwangjoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.283-290
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MgGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.34 eV-(8.81{\times}10^{-4}eV/K)T^2/(T+251K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $MgGa_2Se_4$ have been estimated to be 190.6 meV and 118.8 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $MgGa_2Se_4$/GaAs epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-}$, $B_{1^-}$exciton for n = 1 and $C_{27}-exciton$ peaks for n = 27.

Photocurrent study on the splitting of the valence band and growth of $ZnIn_{2}Se_{4}$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $ZnIn_{2}Se_{4}$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.217-224
    • /
    • 2008
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41\times10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.8622eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2Se_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnIn_2Se_4/GaAs$ epilayer. The three photo current peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-exciton$ for n = 1 and $C_{27}-exciton$ peaks for n = 27.