DOI QR코드

DOI QR Code

Photocurrent Study on the Splitting of the Valence Band and Growth of BaIn2Se4 epilayers by Hot Wall Epitaxy

Hot Wall Epitaxy(HWE)법에 의한 BaIn2Se4 에피레어 성장과 가전자대 갈라짐에 대한 광전류 연구

  • Received : 2013.11.04
  • Accepted : 2014.03.21
  • Published : 2014.03.31

Abstract

A stoichiometric mixture of evaporating materials for $BaIn_2Se_4$ epilayers was prepared from horizontal electric furnace. To obtain the single crystal thin films, $BaIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the epilayers was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $BaIn_2Se_4$ epilayers measured from Hall effect by van der Pauw method are $8.94{\times}10^{17}cm^{-3}$ and 343 $cm^2/vs$ at 293 K, respectively. The temperature dependence of the energy band gap of the $BaIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)$=2.6261 eV-$(4.9825{\times}10^{-3}eV/K)T^2/(T+558 K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $BaIn_2Se_4$ have been estimated to be 116 meV and 175.9 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $BaIn_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1-$, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n=21.

Keywords

References

  1. B. Eisenmann, M. Jakowski, W. Klee, and H. Schafer, "Preparation and properties of spray deposited $BaIn_{2}Se_{4}$ nanocrystalline thin films", Rev. Chim. Min., vol. 20, p. 255, 1983.
  2. W. Kleeand, H. Schafer, and Z. Anorg, "Combined infrared and ramman study of the optical phonons of defect chalcopyrite single crystals", Allg. Chem., vol. 479, p. 125, 1981. https://doi.org/10.1002/zaac.19814790815
  3. S. A. Park, M. Y. Kim, W. T. Kim, M. S. Jin, S. H. Choe, K. H. Park, and D. T. Kim, "Photoluminescence spectra of undoped and $Sm^{3+}$-doped $BaIn_{2}Se_{4}$ single crystals", J. Mater. Res., vol. 17, no. 8, pp. 2147-2152, 2002. https://doi.org/10.1557/JMR.2002.0316
  4. S. P. Yadav, P. S. Shinde, K . Y. Rajpure, and C. H. Bhosale, "Photoelectrochemical properties of spray deposited n- $BaIn_{2}Se_{4}$ thin film", Solar Energy Materials & Solar Cells, vol. 92, pp. 453-456, 2008. https://doi.org/10.1016/j.solmat.2007.10.008
  5. J. Filipowicz, N. Romeo, and L. Tarricone, "Influence of $\gamma$- irradiation on the optical and electrical properties of $BaIn_{2}Se_{4}$ films", Radiat. Phys. Chem., vol. 50, no. 2, pp. 175-177, 2000.
  6. A. A. Vaipolin, Y. A. Nikolaev, V. Y. Rud, and E. I. Terukov, "Radiative recombination in $BaIn_{2}Se_{4}$", Semiconductors, vol. 37, p. 432, 2003.
  7. T. A. Hendia and L .I. Soliman, "Optical absorption behavior of evaporated $BaIn_{2}Se_{4}$ thin films", Thin Solid Films, vol. 261, pp. 322-327, 1995. https://doi.org/10.1016/S0040-6090(94)06488-1
  8. K. J. Hong, T. S. Jeong, and S. H. You, "Structural and optical of $CuGaSe_{2}$ layers grown by hot wall epitaxy"",, J. Crystal Growth, vol. 310, pp. 2717-2723, 2008. https://doi.org/10.1016/j.jcrysgro.2008.02.011
  9. P. Korczak and C. B. Staff, "Heterojunction formation in (Cd,Zn)S/$BaIn_{2}Se_{4}$ ternary solar cells", J. Crystal Growth, vol. 24/25, p. 386, 1974. https://doi.org/10.1016/0022-0248(74)90342-X
  10. B. D. Cullity, Elements of X-ray Diffractions, Caddson-Wesley, chap.11, 1985.
  11. Calvert, L., Victoria, Australia. Private Communication, 1990.
  12. W. Klee and H. Schaefer, "Photoelectrochemical properties of spray deposited n- $BaIn_{2}Se_{4}$ thin film", Rev. Chim. Miner., vol. 16, p. 465, 1979.
  13. H. Fujita, "Electron radition damage in Cadium-Selenide crystal at liquid-helium temperrature", J. Phys. Soc., vol. 20, p. 109, 1965. https://doi.org/10.1143/JPSJ.20.109
  14. Y. P. Varshni, "Far-infrared optical absorption of $Fe^{2+}$ in ZnSe", Physica., vol. 34, p. 149, 1967. https://doi.org/10.1016/0031-8914(67)90062-6
  15. J. L. Shay and J. H. Wernick, Ternary chalcopyrite semiconductor: Growth, electronic properties and applications, (chap. 3, chap. 4, Pergamon Press, 1975.
  16. J. Hopfield, "$BaIn_{2}Se_{4}$/CdS heterojunction photovoltaic detectors", J. Phys. Chem. Solids, vol. 15, p. 97, 1960. https://doi.org/10.1016/0022-3697(60)90105-0
  17. J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel, "Analysis of the electrical and luminescent properties of $BaIn_{2}Se_{4}$", Phys. Rev., vol. 9, no. 4, p. 1719, 1974. https://doi.org/10.1103/PhysRevB.9.1719