• Title/Summary/Keyword: Model foundation

Search Result 2,259, Processing Time 0.024 seconds

Analysis of Settlement Characteristics of Shallow Foundation on Sandy Soil Overlained by Rigid Ground (강성지반위 사질토층에 위치한 얕은기초의 침하량특성분석)

  • Hwang, Hui-Seok;Kim, Dong-Geon;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.45-52
    • /
    • 2014
  • In this paper the settlement characteristic of shallow foundation on sandy soil overlained by rigid ground was investigated by analyzing results of model tests. For model experiments, model tests were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sandy layer(H) to the width of model strip footing(B). As result of tests, settlement of sandy soils increases as the value of H/B increases, whereas it increases with relative density of soil. Bearing capacity decreases as the thickness of the sand layer relative to the footing width increases. In order to analyze the settlement characteristics of sandy ground, the results of model tests were compared with the predicted values using the empirical formulas proposed by Terzaghi, De Beer and Schmertmann. The method by De Beer was found to be in good agreements with test results.

  • PDF

Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.465-476
    • /
    • 2018
  • This article investigates buckling behavior of a multi-phase nanocrystalline nanobeam resting on Winkler-Pasternak foundation in the framework of nonlocal couple stress elasticity and a higher order refined beam model. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, and couple stress effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying an analytical approach. The buckling loads are compared with those of nonlocal couple stress-based beams. It is showed that buckling loads of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, elastic foundation, shear deformation, surface effect, nonlocality and boundary conditions.

2D Analytical Model to Evaluate Behavior of Pipeline in Lowering Phase (자원 이송용 파이프라인의 내리기 단계에서 평면 거동 평가를 위한 해석 모델)

  • Jung Suk Kim;Ki Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.467-475
    • /
    • 2023
  • To ensure the safety of the pipeline against large deformation of the pipeline during lowering construction, the analysis for pipeline becomes emphasized. The FE analysis has a lower efficiency at calculating time, while it could be obtained high accuracy. In this paper, a reasonable analytical model for analysis of pipeline is proposed during lowering-in. This analytical model is partitioned considering the geometrical characteristics and modeled as two parameters Beam On Elastic Foundation and Euler-Bernoulli beam considering the boundary condition. This takes into account the pipeline-soil interaction and the axial forces acting on the pipeline. Previous model can only be applied to standardized conditions, whereas the proposed model defined as Segmented Pipeline Model can be considered for the majority of construction conditions occurred during lowering-in. In addition, minimized assumptions and segmented elements lead to improve the convenience and applicability of modeling. Nevertheless, the model shows accurate results compared to the FE model. Accordingly, it is expected that it will be used efficiently for configuration management as well as safety assessment of pipeline during lowering-in.

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

Performance evaluation of underground box culverts under foundation loading

  • Bin Du;Bo Hao;Xuejing Duan;Wanjiong Wang;Mohammad Roohani
    • Geomechanics and Engineering
    • /
    • v.38 no.4
    • /
    • pp.397-408
    • /
    • 2024
  • Buried box culverts are crucial elements of transportation infrastructure. However, their behavior under foundation loads is not well understood, indicating a significant gap in existing research. This study aims to bridge this gap by conducting a detailed numerical analysis using the Finite Element Method and Abaqus software. The research evaluates the behavior of buried box culverts by examining their interaction with surrounding soil and the pressures from surface foundation loads. Key variables such as embedment depth, culvert wall thickness, concrete material properties, foundation pressure, foundation width, soil elastic modulus, and friction angle are altered to understand their combined effects on structural response. The methodology employs a validated 2D numerical model under plane strain conditions. Parametric studies highlight the critical role of culvert depth (H) in influencing earth pressure and bending moments. Foundation pressure and width demonstrate complex interdependencies affecting culvert behavior. Variations in culvert materials' elastic modulus show minimal impact. It was found that the lower wall of the buried culvert experiences higher average pressure compared to the other two walls, due to the combined effects of the culvert's weight and down drag forces on the side walls. Furthermore, while the pressure distribution on the top and bottom walls is parabolic, the pressure on the side walls follows a different pattern, differing from that of the other two walls.

Analysis of flow through dam foundation by FEM and ANN models Case study: Shahid Abbaspour Dam

  • Shahrbanouzadeh, Mehrdad;Barani, Gholam Abbas;Shojaee, Saeed
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.465-481
    • /
    • 2015
  • Three-dimensional simulation of flow through dam foundation is performed using finite element (Seep3D model) and artificial neural network (ANN) models. The governing and discretized equation for seepage is obtained using the Galerkin method in heterogeneous and anisotropic porous media. The ANN is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning, using the water level elevations of the upstream and downstream of the dam, as input variables and the piezometric heads as the target outputs. The obtained results are compared with the piezometric data of Shahid Abbaspour's Dam. Both calculated data show a good agreement with available measurements that demonstrate the effectiveness and accuracy of purposed methods.

Electro-magneto-elastic analysis of a three-layer curved beam

  • Arefi, Mohammad;Zenkour, Ashraf M.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.695-703
    • /
    • 2017
  • In this paper, based on first-order shear deformation theory, the governing equations of motion for a sandwich curved beam including an elastic core and two piezo-magnetic face-sheets are presented. The curved beam model is resting on Pasternak's foundation and subjected to applied electric and magnetic potentials on the piezo-magnetic face-sheets and transverse loading. The five equations of motion are analytically solved and the bending and vibration results are obtained. The influence of important parameters of the model such as direct and shear parameters of foundation and applied electric and magnetic potentials are studied on the electro-mechanical responses of the problem. A comparison with literatures was performed to validate our formulation and results.

Development of Seismic Stability Evaluation Technology for Rock Foundation of Nuclear Power Plant (원전 기초지반의 내진안정성 평가절차 개발)

  • Hwang, Seong-Chun;Jang, Jung-Bum;Lee, Dae-Su;Kim, Yun-Chil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.74-81
    • /
    • 2005
  • The purpose of this study is to suggest a proper analysis model that can evaluate seismic stability for local rock foundation of nuclear power plant. Sliding Analysis, Pseudo-static Analysis and Danamic Analysis methods are used for analysing NPP rock foundation with the conditions like acting directions of input earthquake, boundary conditions, width and depth of analysing model, and modeling methods of weakness fault zones. As the results of study, Pseudo-static Analysis for lateral roller and dynamic analysis for transfer boundary condition showed good results, and analysing ranges of width and depth were 5 times of structure width and over 2 times of structure depth.

  • PDF

An Analysis on the Deformation of Clayey Foundation Using Elasto-Viscoplastic Model (${\cdot}$粘塑性構成式을 使用한 粘性土地盤의 變形解析)

  • Lee, Moon-Soo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.2
    • /
    • pp.60-72
    • /
    • 1992
  • This study aims at predicting the behavior of saturated soft clayey foundation subjected to earth structure loads such as tidal dike, embankment etc. by using Biot's consolidation equation coupled with elasto-viscoplastic constitutive model. To validate the computer program developed b author, a case study was performed for the site of Kwang-yang steel works improved by sand drain, where since the beginning of the works, field measurements(settlement, lateral displacement and excess pore water pressure) had been accurately achieved. Comparisons between numerical results and observation values were carried out. The main results obtained are summarized as follows : 1. Settlement and lateral displacement between numerical and observation values show satisfactory accordance. 2. As for the exess pre water pressure, numerical results appear to be larger than observation values, which may be due to the existence of sand seams which were not found during soil investigation. 3. Useful data available for failure prediction of soft foundation can be secured by examining lateral displacement, settlement, exess pore water pressure and stress paths.

  • PDF

A Method to determine structureborne noise levels from machineries (고체음원의 출력 예측방법에 대한 연구)

  • 김상렬;김재승;김현실;강현주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.545-550
    • /
    • 1997
  • It is well known that Statistical Energy Analysis(SEA) is one of very attractive analytical methods to solve shipboard noise problems. With reasonable successes, many applications of SEA to shipboard noise prediction have been reported. However when one wishes to obtain theoretical predictions by using SEA in practical systems, he will find difficulty in modeling of source systems, that is, foundations where to place main engine, generator, compressor, and so on. Also, he will find that it is hard to determine the amount of power flow from machinery to structures. In this paper, SEA of a simple foundation model was carried out using the estimated amount of power flow from source; the estimated mobility method. The comparison between the estimated and measured results is presented. That comparison shows a method to get structure-borne noise power from the combination of machinery and foundation. This prediction method gave a good results for a air-compressor mounted on a model foundation. The method is expected to give a reasonable power output in practical problems.

  • PDF