• Title/Summary/Keyword: Model compression

Search Result 1,810, Processing Time 0.027 seconds

Numerical Modeling of Injection/Compression Molding for Center-gated Center-gated Disk (Part I) (Center-gated 디스크에 대한 사출/압축 성형공정의 수치적 모델링-압축성을 고려한 점탄성유체 모델의 사출성형-)

  • Kim, Ilhwan;Park, Seong-Jin;Chung, Seong-Taek;Kwon, Tai-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.289-301
    • /
    • 1998
  • The present study attempted to numerically simulate the process in detail by developing an appropriate physical modeling and the corresponding numerical analysis for precision injection and injection/compression molding process of center-gated disk. In part I, a physical modeling and associated numerical analysis of injection molding with a compressible viscoelastic fluid model are presented. In the distribution of birefringence, the packing procedure results in the inner peaks in addition to the outer peaks near the mold surface, and values of the inner peaks increase with the packing time. Also, values of the density in the core region increase with the packing time. From the numerical results, we also found that birefringence becomes smaller as the melt temperature gets higher and that it is insignificantly affected by the flow rate and the mold temperature. As far as the density distribution is concerned, mold temperature affected the distribution of density especially near the wall. But it was not significantly affected by flow rate and melt temperature. Numerical results of birefringence coincided with experimental data qualitatively but didn't quantitatively.

Study on the Linear Static Structural Analysis Error of Helical Compression Springs (압축 원통 코일 스프링의 선형 정적 구조 해석 오차에 관한 연구)

  • Jang, Sang Chan;Kang, Jung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.237-244
    • /
    • 2016
  • Helical compression springs have been widely used in industries. The springs should be verified through experiment whether the inherent characteristics of the spring can be maintained during the manufacturing process. Considerable time and expense is spent in the manufacturing process. Therefore, in this study, the structural integrity evaluation of a spring was conducted using linear static structural analysis. Verification and comparison of the experimental data were carried out using a variety of international industrial standards with the intent to prove the validity of this study. The spring model did not consider coil ends. As a result of conducting the structural analysis, the quality of the mesh was improved and the time needed to create an analytical model was reduced. The study indicated that Poisson's ratio had little influence on the result of the structural analysis. Additionally, the possibility of verifying the structural integrity evaluation by structural analysis was confirmed.

Effects of the electronic expansion valve and variable velocity compressor on the performance of a refrigeration system

  • Lago, Taynara G.S.;Ismail, Kamal A.R.;Nobrega, Claudia R.E.S.;Moura, Luiz F.M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • Energy consumption of air-conditioning and refrigeration systems is responsible for about 25 to 30% of the energy demand especially in hot seasons. This equipment is mostly electricity dependent and their use in principle affects negatively the environment. Enhancing the energy efficiency of the existing equipment is important as one of the measures to reduce environment impacts. This paper reports the results of an experimental study to evaluate the impacts of the use electronic expansion valve and variable velocity compressor on the performance of vapor compression refrigeration system. The experimental rig is composed of two independent circuits one for the vapor compression system and the other is the secondary fluid system. The vapor compression system is composed of a forced air condenser unit, evaporator, hermetic compressor and expansion elements, while the secondary system has a pump for circulating the secondary fluid, and an air conditioning heat exchanger. The manufacturer's data was used to determine the optimal points of operation of the system and consequently tests were done to evaluate the influence of variation of the compressor velocity and the opening of the expansion device on the performance of the refrigeration system. A fuzzy logic model was developed to control the rotational velocity of the compressor and the thermal load. Fuzzy control model was made in LabVIEW software with the objective of improving the system performance, stability and energy saving. The results showed that the use of fuzzy logic as a form of control strategy resulted in a better energy efficiency.

Video Data Compression using the MPEG-2 Video Algorithm (MPEG-2 비디오 알고리즘을 이용한 비디오 데이터 압축)

  • 남재열;이영선;이현주;김재곤;이상미;안치득
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1069-1082
    • /
    • 1993
  • The International Organization for Standardization(ISO) has undertaken an effort to develop a standard for video and associated audio on digital storage media. This effort is known by the name of the expert group that started if : MPEG-Moving Picture Experts Group Is currently part of the ISO-I EC/J TC1/SC2/WG11. The promise of MPEG-2 is that a video signal and its associated audio can be compressed to a bit rate of about 10 Mbits/s with an acceptable quality. In this paper, the implementation of a video compression simulator based on MPEG-2 Video Test Model 2(TM2) is described and analyzed according to the simulation results. The implemented simulator is also applied to code HDTV sequences at the several bit rates. Some computer simulation results using the MPEG and the HDTV test sequences are given. In addition, some techniques which can improve the coding efficiency of the implemented video compression simulator are also suggested.

  • PDF

Wave Propagation Characteristics in Saturated Porous Media I. Theoretical Solution (포화된 다공성매체에서 파동의 전파특성 I. 이론해의 유도)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.95-103
    • /
    • 2007
  • An analytical closed-form solution for wave propagation velocity and damping in saturated porous media is presented in this paper The fully coupled field model with compressible solid Brains and pore water were used to derive this solution. An engineering approach for the analysis of fully saturated porous media was adopted and closed-form solutions for one dimensional wave propagation in a homogeneous domain were derived. The solution is highly versatile in that it considers compression of the solid grains, compression of the pore water, deformation of the porous skeleton, and spatial damping and can be used to compute wavespeeds of first and second kind and damping coefficients in various geologic materials. This solution provides a means of analyzing the influence of material property variations on wavespeed and attenuation. In Part 2 of this work the theoretical solution is incorporated into the numerical code and the code is used in a parametric study on wave propagation velocity and damping.

Apply Locally Weight Parameter Elimination for CNN Model Compression (지역적 가중치 파라미터 제거를 적용한 CNN 모델 압축)

  • Lim, Su-chang;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.9
    • /
    • pp.1165-1171
    • /
    • 2018
  • CNN requires a large amount of computation and memory in the process of extracting the feature of the object. Also, It is trained from the network that the user has configured, and because the structure of the network is fixed, it can not be modified during training and it is also difficult to use it in a mobile device with low computing power. To solve these problems, we apply a pruning method to the pre-trained weight file to reduce computation and memory requirements. This method consists of three steps. First, all the weights of the pre-trained network file are retrieved for each layer. Second, take an absolute value for the weight of each layer and obtain the average. After setting the average to a threshold, remove the weight below the threshold. Finally, the network file applied the pruning method is re-trained. We experimented with LeNet-5 and AlexNet, achieved 31x on LeNet-5 and 12x on AlexNet.

Shear behavior of composite frame inner joints of SRRC column-steel beam subjected to cyclic loading

  • Ma, Hui;Li, Sanzhi;Li, Zhe;Liu, Yunhe;Dong, Jing;Zhang, Peng
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.495-508
    • /
    • 2018
  • In this paper, cyclic loading tests on composite frame inner joints of steel-reinforced recycled concrete (SRRC) column-steel beam were conducted. The main objective of the test was to obtain the shear behavior and analyze the shear strength of the joints. The main design parameters in the test were recycled coarse aggregate (RCA) replacement percentage and axial compression ratio. The failure process, failure modes, hysteresis curves and strain characteristics of the joints were obtained, and the influences of design parameters on the shear strength of the joints have been also analysed in detail. Results show that the failure modes of the joints area are typical shear failure. The shear bearing capacity of the joints maximally decreased by 10.07% with the increase in the RCA replacement percentage, whereas the shear bearing capacity of the joints maximally increased by 16.6% with the increase in the axial compression ratio. A specific strain analysis suggests that the shear bearing capacity of the joints was mainly provided by the three shear elements of the recycled aggregate concrete (RAC) diagonal compression strut, steel webs and stirrups of the joint area. According to the shear mechanism and test results, the calculation formulas of the shear bearing capacity of the three main shear elements were deduced separately. Thus, the calculation model of the shear bearing capacity of the composite joints considering the adverse effects of the RCA replacement percentage was established through a superposition method. The calculated values of shear strength based on the calculation model were in good agreement with the test values. It indicates that the calculation method in this study can reasonably predict the shear bearing capacity of the composite frame inner joints of SRRC column-steel beam.

Study on Radial Force of Helical Structure for Biodegradable Polymer Stents (생분해성 고분자 스텐트를 위한 나선헝 구조의 팽창력 연구)

  • Park, Chul-Ho;Park, Ga-Ram;Choi, Ji-Yeon;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.260-264
    • /
    • 2011
  • Biodegradable polymeric stents have been issued to replace the existing non-degradable metal stents due to relatively improved biocompatibility and low side effects. Fundamentally, all the stents must possess the desired mechanism strength, especially, compression or radial force to maintain the diameters of expanded vessels. Therefore, this study suggests a helical structure and focused on the relation between the lateral compression and structural factors, Unlike a cylindrical model, the radial force of the helical model is proportional to the thickness and the length to the power of one, whereas the diameter to the power of 1.6. The function obtained from these results might provide the fundamental information to design and prepare the stem for clinical applications.

A Study on Structural Simulation for Development of High Strength and Lightweight 48V MHEV Battery Housing (고강도 경량 48V MHEV 배터리 하우징 개발을 위한 구조시뮬레이션에 관한 연구)

  • Yong-Dae Kim;Jeong-Won Lee;Eui-Chul Jeong;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2023
  • In this study, on the structure simulation for manufacturing a high strength/light weight 48V battery housing for a mild hybrid vehicle was conducted. Compression analysis was performed in accordance with the international safety standards(ECE R100) for existing battery housings. The effect of plastic materials on compressive strength was analyzed. Three models of truss, honeycomb and grid rib for the battery housing were designed and the strength characteristics of the proposed models were analyzed through nonlinear buckling analysis. The effects of the previous existing rib, double-sided grid rib, double-sided honeycomb rib and double-sided grid rib with a subtractive draft for the upper cover on the compressive strength in each axial direction were examined. It was confirmed that the truss rib reinforcement of the battery housing was very effective compared to the existing model and it was also confirmed that the rib of the upper cover had no significant effect. In the results of individual 3-axis compression analysis, the compression load in the lateral long axis direction was the least and this result was found to be very important to achieve the overall goal in designing the battery housing. To reduce the weight of the presented battery housing model, the cell molding method was applied. It was confirmed that it was very effective in reducing injection pressure, clamping force and weight.

  • PDF

Seismic behavior of circular-in-square concrete-filled high-strength double skin steel tubular stub columns with out-of-code B/t ratios

  • Jian-Tao Wang;Yue Wei;Juan Wang;Yu-Wei Li;Qing Sun
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.441-456
    • /
    • 2023
  • Aiming at the development trend of light weight and high strength of engineering structures, this paper experimentally investigated the seismic performance of circular-in-square high-strength concrete-filled double skin steel tubular (HCFDST) stub columns with out-of-code width-to-thickness (B/t) ratios. Typical failure mode of HCFDST stub columns appeared with the infill material crushing, steel fracture and local buckling of outer tubes as well as the inner buckling of inner tubes. Subsequently, the detailed analysis on hysteretic curves, skeleton curves and ductility, energy dissipation, stiffness degradation and lateral force reduction was conducted to reflect the influences of hollow ratios, axial compression ratios and infill types, e.g., increasing hollow ratio from 0.54 to 0.68 and 0.82 made a slight effect on bearing capacity compared to the ductility coefficients; the higher axial compression ratio (e.g., 0.3 versus 0.1) significantly reduced the average bearing capacity and ductility; the HCFDST column SCFST-6 filled with concrete obviously displayed the larger initial secant stiffness with a percentage 34.20% than the column SCFST-2 using engineered cementitious composite (ECC); increasing hollow ratios, axial compression ratios could accelerate the drop speed of stiffness degradation. The out-of-code HCFDST stub columns with reasonable design could behave favorable hysteretic performance. A theoretical model considering the tensile strength effect of ECC was thereafter established and verified to predict the moment-resisting capacity of HCFDST columns using ECC. The reported research on circular-in-square HCFDST stub columns can provide significant references to the structural application and design.