• Title/Summary/Keyword: Model compression

Search Result 1,794, Processing Time 0.026 seconds

Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap (FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Recently, fiber-reinforced plastic(FRP) wraps are blown as an effective material for the enhancement and rehabilitation of aged concrete structures. The purpose of this investigation is to experimentally investigate behavior of concrete cylinder wrapped with FRP materials. Experimental parameters include compressive strength of concrete cylinder, FRP material, and confinement ratio. This paper presents the results of experimental studies on the performance of concrete cylinder specimens externally wrapped with aramid, carbon and glass fiber reinforced Polymer sheets. Test specimens were loaded in uniaxial compression. Axial load, axial and lateral strains were investigated to evaluate the stress-strain behavior, ultimate strength ultimate strain etc. Test results showed that the concrete strength and confinement ratio, defined as the ratio of transverse confinement stress and transverse strain were the most influential factors affecting the stress-strain behavior of confined concrete. More FRP layers showed the better confinement by increasing the compressive strength of test cylinders. In case of test cylinders with higher compressive strength, FRP wraps increased the compressive strength but decreased the compressive sham of concrete test cylinders, that resulted in prominent brittle failure mode. The failure of confined concrete was induced by the rupture of FRP material at the stain, being much smaller than the ultimate strain of FRP material.

Temperature-Dependency Thermal Properties and Transient Thermal Analysis of Structural Frames Exposed to Fire (온도의존성 열특성 계수를 고려한 화재에 노출된 철근콘크리트 골조의 해석적 연구)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan;Shin, Yeong-Soo;Choi, Eun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.283-292
    • /
    • 2007
  • A research projects is currently being conducted to develop a nonlinear finite element analysis methods for predicting the structural behavior of reinforced concrete frame structures, exposed to fire. As part of this, reinforced concrete frames subjected to fire loads were analyzed using the nonlinear finite-element program DIANA. Two numerical steps are incorporated in this program. The first step carries out the nonlinear transient heat flow analysis associated with fire and the second step predicts the structural behavior of reinforced concrete frames subjected to the thermal histories predicted by first step. The complex features of structural behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. A concrete material model based on nonlinear fracture mechanics to take cracking into account and plasticity models for concrete in compression and reinforcement steel were used. The material and analytical models developed in this paper are verified against the experimental data on simple reinforced concrete beams. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. Although, this study considers codes standard fire for reinforced concrete frame, any other time-temperature relationship can be easily incorporated.

A Fast Intra Prediction Method Using Quadtree Structure and SATD in HEVC Encoder (쿼드트리 구조와 SATD를 이용한 HEVC 인코더의 고속 인트라 예측 방식)

  • Kim, Youngjo;Kim, Jaeseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.129-138
    • /
    • 2014
  • This paper proposes a fast intra prediction method to reduce encoding time for the HEVC(high-efficiency video coding) encoder. The proposed fast Intra prediction method uses quadtree structure and SATD(Sum of Absolute Transformed Differences). In HEVC, a $8{\times}8$ SATD value using $8{\times}8$ hadamard transform is used to calculate a SATD value for $8{\times}8$ or larger blocks. The proposed method calculates the best SATD value by using each $8{\times}8$ SATD result in $16{\times}16$ or larger blocks. After that, the proposed method removes a candidate mode for RDO(Rate-Distortion Optimization) based on comparing SATD of the candidate mode and the best SATD. By removing candidate modes, the proposed method reduces the operation of RDO and reduces total encoding time. In $8{\times}8$ block, the proposed method uses additional $4{\times}4$ SATD to calculat the best SATD. The experimental results show that the proposed method achieved 5.08% reduction in encoding time compared to the HEVC test model 12.1 encoder with almost no loss in compression performance.

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

A Novel Compressed Sensing Technique for Traffic Matrix Estimation of Software Defined Cloud Networks

  • Qazi, Sameer;Atif, Syed Muhammad;Kadri, Muhammad Bilal
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4678-4702
    • /
    • 2018
  • Traffic Matrix estimation has always caught attention from researchers for better network management and future planning. With the advent of high traffic loads due to Cloud Computing platforms and Software Defined Networking based tunable routing and traffic management algorithms on the Internet, it is more necessary as ever to be able to predict current and future traffic volumes on the network. For large networks such origin-destination traffic prediction problem takes the form of a large under- constrained and under-determined system of equations with a dynamic measurement matrix. Previously, the researchers had relied on the assumption that the measurement (routing) matrix is stationary due to which the schemes are not suitable for modern software defined networks. In this work, we present our Compressed Sensing with Dynamic Model Estimation (CS-DME) architecture suitable for modern software defined networks. Our main contributions are: (1) we formulate an approach in which measurement matrix in the compressed sensing scheme can be accurately and dynamically estimated through a reformulation of the problem based on traffic demands. (2) We show that the problem formulation using a dynamic measurement matrix based on instantaneous traffic demands may be used instead of a stationary binary routing matrix which is more suitable to modern Software Defined Networks that are constantly evolving in terms of routing by inspection of its Eigen Spectrum using two real world datasets. (3) We also show that linking this compressed measurement matrix dynamically with the measured parameters can lead to acceptable estimation of Origin Destination (OD) Traffic flows with marginally poor results with other state-of-art schemes relying on fixed measurement matrices. (4) Furthermore, using this compressed reformulated problem, a new strategy for selection of vantage points for most efficient traffic matrix estimation is also presented through a secondary compression technique based on subset of link measurements. Experimental evaluation of proposed technique using real world datasets Abilene and GEANT shows that the technique is practical to be used in modern software defined networks. Further, the performance of the scheme is compared with recent state of the art techniques proposed in research literature.

A Sentence Reduction Method using Part-of-Speech Information and Templates (품사 정보와 템플릿을 이용한 문장 축소 방법)

  • Lee, Seung-Soo;Yeom, Ki-Won;Park, Ji-Hyung;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.5
    • /
    • pp.313-324
    • /
    • 2008
  • A sentence reduction is the information compression process which removes extraneous words and phrases and retains basic meaning of the original sentence. Most researches in the sentence reduction have required a large number of lexical and syntactic resources and focused on extracting or removing extraneous constituents such as words, phrases and clauses of the sentence via the complicated parsing process. However, these researches have some problems. First, the lexical resource which can be obtained in loaming data is very limited. Second, it is difficult to reduce the sentence to languages that have no method for reliable syntactic parsing because of an ambiguity and exceptional expression of the sentence. In order to solve these problems, we propose the sentence reduction method which uses templates and POS(part of speech) information without a parsing process. In our proposed method, we create a new sentence using both Sentence Reduction Templates that decide the reduction sentence form and Grammatical POS-based Reduction Rules that compose the grammatical sentence structure. In addition, We use Viterbi algorithms at HMM(Hidden Markov Models) to avoid the exponential calculation problem which occurs under applying to Sentence Reduction Templates. Finally, our experiments show that the proposed method achieves acceptable results in comparison to the previous sentence reduction methods.

Flexural and Buckling Analysis of Laminated Composite Beams with Bi- and Mono-Symmetric Cross-Sections (이축 및 일축 대칭단면 적층복합 보의 휨과 좌굴해석)

  • Hwoang, Jin-Woo;Back, Sung Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.614-621
    • /
    • 2019
  • A generalized laminated composite beam element is presented for the flexural and buckling analysis of laminated composite beams with double and single symmetric cross-sections. Based on shear-deformable beam theory, the present beam model accounts for transverse shear and warping deformations, as well as all coupling terms caused by material anisotropy. The plane stress and plane strain assumptions were used along with the cross-sectional stiffness coefficients obtained from the analytical technique for different cross-sections. Two types of one-dimensional beam elements with seven degrees-of-freedom per node, including warping deformation, i.e., three-node and four-node elements, are proposed to predict the flexural behavior of symmetric or anti-symmetric laminated beams. To alleviate the shear-locking problem, a reduced integration scheme was employed in this study. The buckling load of laminated composite beams under axial compression was then calculated using the derived geometric block stiffness. To demonstrate the accuracy and efficiency of the proposed beam elements, the results based on three-node beam element were compared with those of other researchers and ABAQUS finite elements. The effects of coupling and shear deformation, support conditions, load forms, span-to-height ratio, lamination architecture on the flexural response, and buckling load of composite beams were investigated. The convergence of two different beam elements was also performed.

A Micro Finite Element Analysis on Effects of Altering Monomer-to-Powder ]Ratio of Bone Cement During Vertebroplasty (골 시멘트 중합 비율 변경이 척추성형술 치료에 미치는 영향에 대한 비교 분석)

  • 김형도;탁계래;김한성
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.451-458
    • /
    • 2002
  • Osteoporosis is a systemic skeletal disease caused by low bone mass and the decrease of bone density in the microstructure of trabecular bone. Drug therapy(PTH Parathyroid hormone) may increase the trabecular thickness and thus bone strength. Vertebroplasty is a minimally invasive surgery foy the treatment of osteoporotic vertebral compression fracture. This Procedure includes Puncturing vertebrae and filling with Polymethylmethacrylate(PMMA). Although altering recommended monomer-to-Powder ratio affects material properties of bone cement, clinicians commonly alter the mixture ratio to decrease viscosity and increase the working time. The Purposes of this study were to analyze the effect of 4he monomer-to-powder ratio on the mechanical characteristics of trabecular. In this paper, the finite element model of human vertebral trabecualr bone was developed by modified Voronoi diagram, to analyze the relative effect of hormone therapy and vertebroplasty at the treatment of osteoporotic vertebrae. Trabeuclar bone models for vertebroplasty with varied monomer-to-Powder ratio(0.40∼1.07 ㎖/g) were analyzed. Effective modulus and strength of bone cement-treated models were approximately 60% of those of intact models and these are almost twice the values of hormone-treated models. The bone cement models with the ratio of 0.53㎖/g have the maximum modulus and strength. For the ratio of 1.07㎖/g, the modulus and strength were minimum(42% and 49% respectively) but these were greater than those for drug therapy. This study shows that bone cement treatment is more effective than drug therapy. It is found that in vertebroplasty, using a monomer-to-powder ratio different from that recommended by manufacturer nay significantly not only reduce the cement's material Properties but also deteriorate the mechanical characteristics of osteoporotic vertebrae.

A Feasibility Study of Earthquake Monitoring Using a High-resolution Borehole Strainmeter (고분해능 시추공 변형률계 활용을 통한 지진 연구 가능성)

  • Soh, Inho;Chang, Chandong
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This work investigates whether stress changes induced by an earthquake can be estimated using the deformation measured by high-resolution borehole strainmeters. We estimate the changes in the orientation and magnitude of the principal compression stresses using borehole strainmeter data recorded before and after the M7.2 El Mayor-Cucapah earthquake on April 4, 2010. Clear differences in the stress orientations and magnitudes are apparent before and after the event. The change in stress orientation appears related to subtle increases of stress in the tectonic maximum principal orientation, which is in agreement with the earthquake focal mechanism solution. The sudden stress drop at the onset of the earthquake was 10−3-10−2 MPa in the principal orientations. The Coulomb stress transfer model, which can estimate stress transfer, predicts a shear stress increase of (0.1-0.6) × 10−2 MPa at the strainmeter site, which is in line with the measured data (0.3-0.8) × 10−2 MPa. Overall, our results suggest that borehole strainmeter data reflect the subtle stress changes associated with earthquake occurrence, and that such data can be utilized for earthquake-related research.

The Implementation of Multi-Channel Audio Codec for Real-Time operation (실시간 처리를 위한 멀티채널 오디오 코덱의 구현)

  • Hong, Jin-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.91-97
    • /
    • 1995
  • This paper describes the implementation of a multi-channel audio codec for HETV. This codec has the features of the 3/2-stereo plus low frequency enhancement, downward compatibility with the smaller number of channels, backward compatibility with the existing 2/0-stereo system(MPEG-1 audio), and multilingual capability. The encoder of this codec consists of 6-channel analog audio input part with the sampling rate of 48 kHz, 4-channel digital audio input part and three TMS320C40 /DSPs. The encoder implements multi-channel audio compression using a human perceptual psychoacoustic model, and has the bit rate reduction to 384 kbit/s without impairment of subjective quality. The decoder consists of 6-channel analog audio output part, 4-channel digital audio output part, and two TMS320C40 DSPs for a decoding procedure. The decoder analyzes the bit stream received with bit rate of 384 kbit/s from the encoder and reproduces the multi-channel audio signals for analog and digital outputs. The multi-processing of this audio codec using multiple DSPs is ensured by high speed transfer of date between DSPs through coordinating communication port activities with DMA coprocessors. Finally, some technical considerations are suggested to realize the problem of real-time operation, which are found out through the implementation of this codec using the MPEG-2 layer II sudio coding algorithm and the use of the hardware architecture with commercial multiple DSPs.

  • PDF