• Title/Summary/Keyword: Model compound

Search Result 878, Processing Time 0.03 seconds

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1999.04a
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

Comparative molecular field analysis (CoMFA) and holographic quantitative structure-activity relationship (HQSAR) on the growth inhibition activity of the herbicidal 3-phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole derivatives (제초성 3-Phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole 유도체들의 생장 저해활성에 관한 비교 분자장 분석 (CoMFA)과 분자 홀로그램 구조-활성관계 (HQSAR))

  • Sung, Nack-Do;Lee, Sang-Ho;Song, Jong-Hwan;Kim, Hyoung-Rae
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.2
    • /
    • pp.108-116
    • /
    • 2003
  • A series of new quinclorac family, herbicidal 3-phenyl-5-(3,7-dichloro-8-quinolinyl)-1,2,4-oxadiazole derivatives as substrate were synthesized and their growth inhibition activity $(pI_{50})$ against root and shoot of rice plant (Oryza sativa L.) and barnyard grass (Echinochloa crus-galli) were determined. And then comparative molecular field analysis (CoMFA) and molecular holographic quantitative structure- activity relationship (HQSAR) were compared in terms of their potential for predictiability. The statistical results were suggested that HQSAR based model had better predictability than CoMFA model. The selective factors to remove barnyard grass take electron withdrawing groups which can be created positive charge and steric bulky on the phenyl ring. Results revealed that the unknown 2,6-dichloro-substituent, U5 and 2,4,6-trichloro-substituent, U6(${\Delta}pI_{50}$=CoMFA: 1.18 & HQSAR: 1.82) were predicted as compound with higher activity and selectivity.

Effect of Landfill Site Characteristics on Siloxane Production in Landfill Gas (매립지 특성이 매립가스 내 siloxane 발생에 미치는 영향)

  • Nam, Sangchul;Kang, Jeong-Hee;Hur, Kwang-Beom;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.44-53
    • /
    • 2011
  • Siloxane, organo-silicon compound, is used in the various forms of products such as cosmetics and detergents due to its quality physical chemistry attributes. Siloxane included in landfill gas which is caused in the process of decomposing of such products after landfill has imposed negative impacts on the operation of landfill gas utility facilities. The objective of this study was to investigate the siloxane production characteristics depending on the features of various landfill site in Korea so that the analysis was made on the landfilling age and landfill waste by in terms of its concentration, structure and composition. As for the concentration of siloxane depending on time passage, 12 landfill sites were reviewed by landfilling age. As for production attributes change of siloxane by landfill wastes, the source of wastes, physical production ration and siloxane concentration were compared in 6 landfills. The average concentration of total-siloxane within LFG is $6.75mg/m^3$ and cyclic-siloxane out of it occupies over 93%. By element, D4 and D5 in order take the highest proportion regardless of total-siloxane concentration and landfilling age. Even though this study is not able to verify the different impact of each kind of wastes on the generation of siloxane, it is confirmed that total-siloxane and cyclic-siloxane decrease in line with the increase of landfilling age as it does in the first order decay model for landfill gas.

Characteristics of Volatile Compound Adsorption from Alcoholic Model Solution onto Various Activated Carbons (알코올모델용액을 이용한 여러 종류 활성탄의 휘발성화합물 흡착특성)

  • Park, Seung-Kook;Lee, Myung-Soo;Kim, Byung-Ho;Kim, Dae-Ok
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Ten commercial activated carbons (ACs) prepared from four different sources (bamboo, wood, peat, and coal) were evaluated for their adsorptive efficiency of six volatile compounds (isoamyl alcohol, hexanal, furfural, ethyl lactate, ethyl octanoate, 2-phenyl ethanol) which were dissolved in a 30% alcoholic model solution. These six volatile compounds are frequently found in alcoholic beverages and possibly contribute to physiological hangover due to their high concentrations. They are also generally regarded as off-flavor compounds at certain levels in alcoholic beverages such as whisky and vodka. Two hundred mL of 30% alcoholic solutions containing these six volatile compounds were treated with 0.2 g of ACs while stirring for 16 hr; the treated solutions were then measured for their adsorptive efficiencies (or removal efficiencies) by gas chromatographic analysis using two different sampling methods (direct liquid injection and headspace-solid phase microextraction). The adsorptive efficiencies of the ACs varied depending on the identity of the volatile compounds and the source material used for making the ACs. Ethyl octanoate, 2-phenyl ethanol, and hexanal were removed at high efficiencies (34-100%), whereas isoamyl alcohol, ethyl lactate, and furfural were removed at low efficiencies (5-13%). AC prepared from bamboo showed a high removal efficiency for isoamyl alcohol, aldehydes (hexanal and furfural), and 2-phenyl ethanol; these major fusel oils have been implicated as congeners responsible for alcohol hangover.

Estimation and Validation of the Leaf Areas of Five June-bearing Strawberry (Fragaria × ananassa) Cultivars using Non-destructive Methods (일계성 딸기 5품종의 비파괴적 방법을 사용한 엽면적 추정 및 검증)

  • Jo, Jung Su;Sim, Ha Seon;Jung, Soo Bin;Moon, Yu Hyun;Jo, Won Jun;Woo, Ui Jeong;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.98-103
    • /
    • 2022
  • Non-destructive estimation of leaf area is a more efficient and convenient method than leaf excision. Thus, several models predicting leaf area have been developed for various horticultural crops. However, there are limited studies on estimating the leaf area of strawberry plants. In this study, we predicted the leaf areas via nonlinear regression analysis using the leaf lengths and widths of three-compound leaves in five domestic strawberry cultivars ('Arihyang', 'Jukhyang', 'Keumsil', 'Maehyang', and 'Seollhyang'). The coefficient of determination (R2) between the actual and estimated leaf areas varied from 0.923 to 0.973. The R2 value varied for each cultivar; thus, leaf area estimation models must be developed for each cultivar. The leaf areas of the three cultivars 'Jukhyang', 'Seolhyang', and 'Maehyang' could be non-destructively predicted using the model developed in this study, as they had R2 values over 0.96. The cultivars 'Arihyang' and 'Geumsil' had slightly low R2 values, 0.938 and 0.923, respectively. The leaf area estimation model for each cultivar was coded in Python and is provided in this manuscript. The estimation models developed in this study could be used extensively in other strawberry-related studies.

Performance Analysis of Trading Strategy using Gradient Boosting Machine Learning and Genetic Algorithm

  • Jang, Phil-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.147-155
    • /
    • 2022
  • In this study, we developed a system to dynamically balance a daily stock portfolio and performed trading simulations using gradient boosting and genetic algorithms. We collected various stock market data from stocks listed on the KOSPI and KOSDAQ markets, including investor-specific transaction data. Subsequently, we indexed the data as a preprocessing step, and used feature engineering to modify and generate variables for training. First, we experimentally compared the performance of three popular gradient boosting algorithms in terms of accuracy, precision, recall, and F1-score, including XGBoost, LightGBM, and CatBoost. Based on the results, in a second experiment, we used a LightGBM model trained on the collected data along with genetic algorithms to predict and select stocks with a high daily probability of profit. We also conducted simulations of trading during the period of the testing data to analyze the performance of the proposed approach compared with the KOSPI and KOSDAQ indices in terms of the CAGR (Compound Annual Growth Rate), MDD (Maximum Draw Down), Sharpe ratio, and volatility. The results showed that the proposed strategies outperformed those employed by the Korean stock market in terms of all performance metrics. Moreover, our proposed LightGBM model with a genetic algorithm exhibited competitive performance in predicting stock price movements.

Antimalarial effect of synthetic endoperoxide on synchronized Plasmodium chabaudi infected mice

  • Nagwa S. M. Aly;Hiroaki Matsumori;Thi Quyen Dinh;Akira Sato;Shin-Ichi Miyoshi;Kyung-Soo Chang;Hak Sun Yu;Fumie Kobayashi;Hye-Sook Kim
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • The discovery of new antimalarial drugs can be developed using asynchronized Plasmodium berghei malaria parasites in vivo in mice. Studies on a particular stage are also required to assess the effectiveness and mode of action of drugs. In this report, we used endoperoxide 6-(1,2,6,7-tetraoxaspiro [7.11] nonadec-4-yl) hexan-1-ol (N-251) as a model antimalarial compound on P. chabaudi parasites. We examined the antimalarial effect of N-251 against ring-stage- and trophozoite-stage-rich P. chabaudi parasites and asynchronized P. berghei parasites using the 4-day suppressive test. The ED50 values were 27, 22, and 22 mg/kg, respectively, and the antimalarial activity of N-251 was verified in both rodent malaria parasites. To assess the stage-specific effect of N-251 in vivo, we evaluated the change of parasitemia and distribution of parasite stages using ring-stage- and trophozoite-stage-rich P. chabaudi parasites with one-day drug administration for one life cycle. We discovered that the parasitemias decreased after 13 and 9 hours post-treatment in the ring-stage- and trophozoite-stage-rich groups, respectively. Additionally, in the ring-stage-rich N-251 treated group, the ring-stage parasites hindered trophozoite parasite development. For the trophozoite-stage-rich N-251 treated group, the distribution of the trophozoite stage was maintained without a change in parasitemia until 9 hours. Because of these findings, it can be concluded that N-251 suppressed the trophozoite stage but not the ring stage. We report for the first time that N-251 specifically suppresses the trophozoite stage using P. chabaudi in mice. The results show that P. chabaudi is a reliable model for the characterization of stage-specific antimalarial effects.

A Study on the Artificial Intelligence-Based Soybean Growth Analysis Method (인공지능 기반 콩 생장분석 방법 연구)

  • Moon-Seok Jeon;Yeongtae Kim;Yuseok Jeong;Hyojun Bae;Chaewon Lee;Song Lim Kim;Inchan Choi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.1-14
    • /
    • 2023
  • Soybeans are one of the world's top five staple crops and a major source of plant-based protein. Due to their susceptibility to climate change, which can significantly impact grain production, the National Agricultural Science Institute is conducting research on crop phenotypes through growth analysis of various soybean varieties. While the process of capturing growth progression photos of soybeans is automated, the verification, recording, and analysis of growth stages are currently done manually. In this paper, we designed and trained a YOLOv5s model to detect soybean leaf objects from image data of soybean plants and a Convolution Neural Network (CNN) model to judgement the unfolding status of the detected soybean leaves. We combined these two models and implemented an algorithm that distinguishes layers based on the coordinates of detected soybean leaves. As a result, we developed a program that takes time-series data of soybeans as input and performs growth analysis. The program can accurately determine the growth stages of soybeans up to the second or third compound leaves.

Development of Drawing & Specification Management System Using 3D Object-based Product Model (3차원 객체기반 모델을 이용한 설계도면 및 시방서관리 시스템 구축)

  • Kim Hyun-nam;Wang Il-kook;Chin Sang-yoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.3 s.3
    • /
    • pp.124-134
    • /
    • 2000
  • In construction projects, the design information, which should contain accurate product information in a systematic way, needs to be applicable through the life-cycle of projects. However, paper-based 2D drawings and relevant documents has difficulties in communicating and sharing the owner's and architect's intention and requirement effectively and building a corporate knowledge base through on-going projects due to Tack of interoperability between specific task or function-oriented software and handling massive information. Meanwhile, computer and information technologies are being developed so rapidly that the practitioners are even hard to adapt them into the industry efficiently. 3D modeling capabilities in CAD systems are enormously developed and enables users to associate 3D models with other relevant information. However, this still requires a great deal of efforts and costs to have all the design information represented in CAD system, and the sophisticated system is difficult to manage. This research focuses on the transition period from 2D-based design Information management to 3D-based, which means co-existence of 2D and 3D-based management. This research proposes a model of a compound system of 2D and 3D-based CAD system which presents the general design information using 3D model integrating with 2D CAD drawings for detailed design information. This research developed an integrated information management system for design and specification by associating 2D drawings and 3D models, where 2D drawings represents detailed design and parts that are hard to express in 3D objects. To do this, related management processes was analyzed to build an information model which in turn became the basis of the integrated information management system.

  • PDF

Development of a Probabilistic Model for the Estimation of Yearly Workable Wave Condition Period for Offshore Operations - Centering on the Sea off the Ulsan Harbor (해상작업 가능기간 산정을 위한 확률모형 개발 - 울산항 전면 해역을 중심으로)

  • Choi, Se Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.115-128
    • /
    • 2019
  • In this study, a probabilistic model for the estimation of yearly workable wave condition period for offshore operations is developed. In doing so, we first hindcast the significant wave heights and peak periods off the Ulsan every hour from 2003.1.1 to 2017.12.31 based on the meteorological data by JMA (Japan Meterological Agency) and NOAA (National Oceanic and Atmospheric Administration), and SWAN. Then, we proceed to derive the long term significant wave height distribution from the simulated time series using a least square method. It was shown that the agreements are more remarkable in the distribution in line with the Modified Glukhovskiy Distribution than in the three parameters Weibull distribution which has been preferred in the literature. In an effort to develop a more comprehensive probabilistic model for the estimation of yearly workable wave condition period for offshore operations, wave height distribution over the 15 years with individual waves occurring within the unit simulation period (1 hour) being fully taken into account is also derived based on the Borgman Convolution Integral. It is shown that the coefficients of the Modified Glukhovskiy distribution are $A_p=15.92$, $H_p=4.374m$, ${\kappa}_p=1.824$, and the yearly workable wave condition period for offshore work is estimated to be 319 days when a threshold wave height for offshore work is $H_S=1.5m$. In search of a way to validate the probabilistic model derived in this study, we also carry out the wave by wave analysis of the entire time series of numerically simulated significant wave heights over the 15 years to collect every duration periods of waves the height of which are surpassing the threshold height which has been reported to be $H_S=1.5m$ in the field practice in South Korea. It turns out that the average duration period is 45.5 days from 2003 to 2017, which is very close to 46 days from the probabilistic model derived in this study.