• Title/Summary/Keyword: Model based diagnosis method

Search Result 369, Processing Time 0.025 seconds

Demagnetization Fault Diagnosis in IPMSM Using Linear Interpolation (선형보간법을 이용한 매립형 영구자석 동기모터의 감자고장진단)

  • Jeong, Hyeyun;Moon, Seokbae;Lee, Hojin;Kim, Sang Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.568-574
    • /
    • 2017
  • This paper proposes a demagnetization fault diagnosis method for interior permanent magnet synchronous motors(IPMSMs). In particular, a demagnetization fault is one of the most frequent electrical faults in IPMSMs. This paper proposes an estimation method for permanent magnet flux. The method is based on linear interpolation. The effectiveness of the proposed method for diagnose demagnetization faults is verified through various operating conditions by finite element simulation.

Multi-stage structural damage diagnosis method based on "energy-damage" theory

  • Yi, Ting-Hua;Li, Hong-Nan;Sun, Hong-Min
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.345-361
    • /
    • 2013
  • Locating and assessing the severity of damage in large or complex structures is one of the most challenging problems in the field of civil engineering. Considering that the wavelet packet transform (WPT) has the ability to clearly reflect the damage characteristics of structural response signals and the artificial neural network (ANN) is capable of learning in an unsupervised manner and of forming new classes when the structural exhibits change, this paper investigates a multi-stage structural damage diagnosis method by using the WPT and ANN based on "energy-damage" theory, in which, the wavelet packet component energies are first extracted to be damage sensitive feature and then adopted as input into an improved back propagation (BP) neural network model for damage diagnosis in a step by step mode. To validate the efficacy of the presented approach of the damage diagnosis, the benchmark structure of the American Society of Civil Engineers (ASCE) is employed in the case study. The results of damage diagnosis indicate that the method herein is computationally efficient and is able to detect the existence of different damage patterns in the simulated experiment where minor, moderate and severe damages corresponds to involving in the loss of stiffness on braces or the removal bracing in various combinations.

Leakage detection of pipeline system based on modeling and identification (모델링과 검증에 의한 파이프 라인 시스템의 유출 탐지)

  • ;;;Lee, K. S.;Song, H. K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.905-910
    • /
    • 1991
  • This paper presets a leakage detection method based on modeling the leakage in pipeline systems. For gas pipeline systems, a method based on the state space model is suggested. For liquid pipeline systems, an experiment based on the static model equation was performed. In the experiment, it was possible to detect the leak and to diagnosis the leak situation within the error of .+-.3%.

  • PDF

A Current Dynamic Analysis Based Open-Circuit Fault Diagnosis Method in Voltage-Source Inverter Fed Induction Motors

  • Tian, Lisi;Wu, Feng;Shi, Yi;Zhao, Jin
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.725-732
    • /
    • 2017
  • This paper proposed a real-time, low-cost, fast transistor open-circuit fault diagnosis method for voltage-source inverter fed induction motors. A transistor open-circuit changes the symmetry of the inverter topology, leading to different similarities among three phase load currents. In this paper, dynamic time warping is proposed to describe the similarities among load currents. The proposed diagnosis is independent of the system model and needs no extra sensors or electrical circuits. Both simulation and experimental results show the high efficiency of the proposed fault diagnosis method.

Bearing Fault Diagnosis Using Fuzzy Inference Optimized by Neural Network and Genetic Algorithm

  • Lee, Hong-Hee;Nguyen, Ngoc-Tu;Kwon, Jeong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.353-357
    • /
    • 2007
  • The bearing diagnostics method is presented in this paper using fuzzy inference based on vibration data. Both time-domain and frequency-domain features are used as input data for bearing fault detection. The Adaptive Network based Fuzzy Inference System (ANFIS) and Genetic Algorithm (GA) have been proposed to select the fuzzy model input and output parameters. Training results give the optimized fuzzy inference system for bearing diagnosis based on measured vibration data. The result is also tested with other sets of bearing data to illustrate the reliability of the chosen model.

Observer-Based Robust Fault Diagnosis and Reconfigurable Adaptive Control for Systems with Unknown Inputs (미지입력을 포함한 시스템의 관측기 기반 견실고장진단 및 재구성 적응제어)

  • 최재원;이승우;서영수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.928-934
    • /
    • 2002
  • A natural way to cope with fault tolerant control (FTC) problems is to modify the control parameters according to an online identification of the system parameters when a fault occurs. However. due to not only difficulties Inherent to the online multivariable identification in closed-loop systems, such as modeling errors, noise or the lack of excitation signals, but also long time requirement to identify the post-fault system and implemeutation of control problems during the identification process, we propose an alternative approach based on the observer-based fault detection and isolation (FDI) and model reference adaptive control (MRAC). The proposed robust fault diagnosis method is based on a bank of observers. We also propose a model reference adaptive control with changeable reference models according to the occurred faults. Simulation results of a flight control example show the validity and applicability of the proposed algorithms.

The detection and diagnosis model for small scale MSLB accident

  • Wang, Meng;Chen, Wenzhen
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3256-3263
    • /
    • 2021
  • The main steam line break accident is an essential initiating event of the pressurized water reactor. In present work, the fuzzy set theory and the signal-based fault detection method has been used to detect the occurrence and diagnosis of the location and break area for the small scale MSLB. The models are validated by the AP1000 accident simulator based on MAAP5. From the test results it can be seen that the proposed approach has a rapid and proper response on accident detection and location diagnosis. The method proposed to evaluate the break area shows good performances for small scale MSLB with the relative deviation within ±3%.

Research on diagnosis method of centrifugal pump rotor faults based on IPSO-VMD and RVM

  • Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.827-838
    • /
    • 2023
  • Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.

Bearing Fault Diagnosis Using Automaton through Quantization of Vibration Signals (진동신호 양자화에 의한 거동반응을 이용한 베어링 고장진단)

  • Kim, Do-Hyun;Choi, Yeon-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.495-502
    • /
    • 2006
  • A fault diagnosis method is developed in this study using automaton through quantization of vibration signals for normal and faulty conditions, respectively. Automaton is a kind of qualitative model which describes the system behaviour at the level of abstraction. The system behavior was extracted from the probability of the output sequence of vibration signals. The sequence was made as vibration levels by reconstructing the originally measured vibration signals. As an example, a fault diagnosis for the bearing of ATM machine was done, which detected the bearing fault with confident level compared to any other existing methods of kurtosis or spectrum analysis.

An Input Transformation with MFCCs and CNN Learning Based Robust Bearing Fault Diagnosis Method for Various Working Conditions (MFCCs를 이용한 입력 변환과 CNN 학습에 기반한 운영 환경 변화에 강건한 베어링 결함 진단 방법)

  • Seo, Yangjin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.179-188
    • /
    • 2022
  • There have been many successful researches on a bearing fault diagnosis based on Deep Learning, but there is still a critical issue of the data distribution difference between training data and test data from their different working conditions causing performance degradation in applying those methods to the machines in the field. As a solution, a data adaptation method has been proposed and showed a good result, but each and every approach is strictly limited to a specific applying scenario or presupposition, which makes it still difficult to be used as a real-world application. Therefore, in this study, we have proposed a method that, using a data transformation with MFCCs and a simple CNN architecture, can perform a robust diagnosis on a target domain data without an additional learning or tuning on the model generated from a source domain data and conducted an experiment and analysis on the proposed method with the CWRU bearing dataset, which is one of the representative datasests for bearing fault diagnosis. The experimental results showed that our method achieved an equal performance to those of transfer learning based methods and a better performance by at least 15% compared to that of an input transformation based baseline method.