• Title/Summary/Keyword: Model Optimization

검색결과 5,667건 처리시간 0.032초

가중평균대리모델을 사용한 천음속 압축기 블레이드 최적화 (Blade Optimization of a Transonic Compressor Using a Multiple Surrogate Model)

  • 압두스 사마드;최재호;김광용
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.317-326
    • /
    • 2008
  • The main purpose of the present study is to perform shape optimizations of transonic compressor blade in order to enhance its performance. In this study, the Latin hypercube sampling of design of experiments and the weighted average surrogate model with the help of a gradient based optimization algorithm are used within design space by the lower and upper limits of each design variable and for finding optimum designs, respectively. 3-D Reynolds-averaged Navier-Stokes solver is used to evaluate the objective functions of adiabatic efficiency and pressure ratio. Six variables from lean and airfoil thickness profile are selected as design variables. The results show that the adiabatic efficiency is enhanced by 1.43% by efficiency optimization while the pressure ratio is increased very small, and pressure ratio is increased by 0.24% by pressure ratio optimization.

단순유한요소모델을 이용한 차체필라 형상최적설계 (Design Optimization for vehicle Pillar Section Shape Using Simple Finite Element Model)

  • 이상범
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.133-139
    • /
    • 2000
  • Vibrational characteristics of the vehicle structure are mainly influenced by the shape of the pillar cross section. In this paper a vehicle structural optimization technique has been developed to investigate a lightweight vehicle structure subject to constraints on natural frequencies in a simple beam-and-shell model. In this technique, the optimization procedures involve two stages. In the first stage, the section procedures involve tow stages. In the first stage, the section properties of beam elements of the vehicle structure has been optimized to have minimum weight while satisfying the constraints of natural frequencies. And, in the second stage, the shape of the cross section of the elements of the structure has been determined.

  • PDF

Developing an Optimization Module for Water, Energy, and Food Nexus Simulation

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.184-184
    • /
    • 2017
  • A nation-wide water-energy-food (WEF) nexus simulation model has been developed by the authors and successfully applied to South Korea to predict the sustainability of those three resources in the next 30 years. The model was also capable of simulating future scenarios of resources allocation based on priority rules aiming to maximize resources sustainability. However, the process was still relying on several assumptions and trial-and-error approach, which sometimes resulted in non-optimal solutions of resources allocation. In this study, an optimization module was introduced to enhance the model in generating optimal resources management rules. The objective of the optimization was to maximize the reliability index of resources by determining the resources' allocation and/or priority rules for each demand type that accordingly reflect the resources management policies. Implementation of the optimization module would result in balanced allocation and management of limited resources and assist the stakeholders in deciding resources' management plans, either by fulfilling the domestic production or by global trading.

  • PDF

D-Optimal 반응표면모델에 의한 섀시 프레임 최적설치 (Optimization of Chassis Frame by Using D-Optimal Response Surface Model)

  • 이광기;구자겸;이태희
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.894-900
    • /
    • 2000
  • Optimization of chassis frame is performed according to the minimization of eleven responses representing one total frame weight, three natural frequencies and seven strength limits of chassis frame that are analyzed by using each response surface model from D-optimal design of experiments. After each response surface model is constructed form D-optimal design and random orthogonal array, the main effect and sensitivity analyses are successfully carried out by using this approximated regression model and the optimal solutions are obtained by using a nonlinear programming method. The response surface models and the optimization algorithms are used together to obtain the optimal design of chassis frame. The eleven-polynomial response surface models of the thirteen frame members (design factors) are constructed by using D-optimal Design and the multi-disciplinary design optimization is also performed by applying dual response analysis.

크리깅 모델을 이용한 순차적 근사최적화 (Sequential Approximate Optimization Using Kriging Metamodels)

  • 신용식;이용빈;류제선;최동훈
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1199-1208
    • /
    • 2005
  • Nowadays, it is performed actively to optimize by using an approximate model. This is called the approximate optimization. In addition, the sequential approximate optimization (SAO) is the repetitive method to find an optimum by considering the convergence of an approximate optimum. In some recent studies, it is proposed to increase the fidelity of approximate models by applying the sequential sampling. However, because the accuracy and efficiency of an approximate model is directly connected with the design area and the termination criteria are not clear, sequential sampling method has the disadvantages that could support an unreasonable approximate optimum. In this study, the SAO is executed by using trust region, Kriging model and Optimal Latin Hypercube design (OLHD). Trust region is used to guarantee the convergence and Kriging model and OLHD are suitable for computer experiment. finally, this SAO method is applied to various optimization problems of highly nonlinear mathematical functions. As a result, each approximate optimum is acquired and the accuracy and efficiency of this method is verified by comparing with the result by established method.

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

은닉 마르코프 모델의 확률적 최적화를 통한 자동 독순의 성능 향상 (Improved Automatic Lipreading by Stochastic Optimization of Hidden Markov Models)

  • 이종석;박철훈
    • 정보처리학회논문지B
    • /
    • 제14B권7호
    • /
    • pp.523-530
    • /
    • 2007
  • 본 논문에서는 자동 독순(automatic lipreading)의 인식기로 쓰이는 은닉 마르코프 모델(HMM: hidden Markov model)의 새로운 확률적 최적화 기법을 제안한다. 제안하는 기법은 전역 최적화가 가능한 확률적 기법인 모의 담금질과 지역 최적화 기법을 결합하는 것으로써, 알고리즘의 빠른 수렴과 좋은 해로의 수렴을 가능하게 한다. 제안하는 알고리즘이 전역 최적해로 수렴함을 수학적으로 보인다. 제안하는 기법을 통해 HMM을 학습함으로써 기존의 알고리즘이 지역해만을 찾는 단점을 개선함으로써 향상된 독순 성능을 나타냄을 실험으로 보인다.

선택적 요소방법을 이용한 구조 형상최적 설계기법의 개발 (Development of a Structural Shape Optimization Scheme Using Selective Element Method)

  • 심진욱;박경진
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2101-2109
    • /
    • 2003
  • Structural shape optimization offers engineers with numerous advantages in designing shapes of structures. However, excessive relocation of nodes often cause distortion of elements and eventually result in degrade of accuracy and even halts of processes. To overcome these problems, an effective method, Selective Element Method(SEM), has been developed. This paper describes the basic concept of SEM and processes to implement into real-world problem. 2-D and 3-D shape optimization problems have been chosen to show the performance of the method. Though some limitations have been found, it was concluded that SEM can be useful in general shape optimization and even in some special cases such as decision of optimal weld line location.

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제27권2호
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

유전알고리즘을 이용한 지속가능 공간최적화 모델 기초연구 - 선행연구 분석을 중심으로 - (Basic Study on Spatial Optimization Model for Sustainability using Genetic Algorithm - Based on Literature Review -)

  • 윤은주;이동근
    • 한국환경복원기술학회지
    • /
    • 제20권6호
    • /
    • pp.133-149
    • /
    • 2017
  • As cities face increasing problems such as aging, environmental pollution and growth limits, we have been trying to incorporate sustainability into urban planning and related policies. However, it is very difficult to generate a 'sustainable spatial plans' because there are trade-offs among environmental, society, and economic values. This is a kind of non-linear problem, and has limitations to be solved by existing qualitative expert knowledge. Many researches from abroad have used the meta heuristic optimization algorithms such as Genetic Algorithms(GAs), Simulated Annealing(SA), Ant Colony Optimization(ACO) and so on to synthesize competing values in spaces. GAs is the most frequently applied theory and have been known to produce 'good-enough plans' in a reasonable time. Therefore we collected the research on 'spatial optimization model based GAs' and analyzed in terms of 'study area', 'optimization objective', 'fitness function', and 'effectiveness/efficiency'. We expect the results of this study can suggest that 'what problems the spatial optimization model can be applied to' and 'linkage possibility with existing planning methodology'.