이 연구의 목적은 탐구 과정을 수행하는 동안 발산적 사고와 수렴적 사고를 경험할 수 있는 수업 전략을 개발하고 이를 적용함으로써 그 효과를 검증하는 것이다. 이를 위하여 발산하기 모형, 수렴하기 모형, 발산-수렴 함께하기 모형을 탐구의 각 단계에 활용할 수 있는 수업 전략을 개발하였다. 그리고 중학교 1학년을 대상으로 개발한 수업 전략을 실시한 후 이 수업 전략이 창의적 사고력, 비판적 사고력, 창의적 인성 및 학업 성취도에 미치는 효과를 알아보았다. 그 결과 문제 인식, 가설 설정, 변인 통제의 모든 영역에서 창의성의 하위 범주인 유창성과 융통성이 유의미하게 향상되었다. 독창성에 대해서는 실험 집단의 교정 평균이 통제 집단에 비해 높게 나타났으나 통계적으로는 유의미하지 않았다. 비판적 사고력에 대해서는 문제 인식, 결론 도출 및 일반화 과정에서 유의미한 신장을 나타냈다. 또한, 본 연구의 수업 전략은 학업 성취도에도 긍정적인 영향을 미치는 것으로 나타났다. 그러나 창의적 인성에 대해서는 모든 하위영역에 대하여 유의미한 차이가 나타나지 않았다.
Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
Computers and Concrete
/
제22권2호
/
pp.249-259
/
2018
This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.
성과 지표로서의 전방적 정확도는 정답인 경우 1, 오답인 경우 0으로 계사하는 이른바 모듈화된 정확도를 충분히 고려하지 못한다. 이에 문제의 특징에 따라 모듈화 정확도에 맞는 판별 규칙을 최적화 하는 보다 스마트한 판별 알고리즘이 필요하다고 볼 수 있다. 이에 따라, 스마트한 알고리즘은 문제 유형에 따라 보다 일반화되고 실제 성능의 왜곡을 야기할 수 있는 이산화에 제약되지 않아야 한다. 따라서 본 논문의 목적인 모듈화 정확도를 개선하는 새로운 부스팅 알고리즘을 제안하는 것이다. 이에 일반화를 도모하고 문제 영역의 특성에 맞게 판별화 모형을 선정하기 위해 스마트함을 고려한 모형 선정 알고리즘을 개발하였다. 제안된 방법의 성능을 검증하기 위해 실제로 47,000여건의 특허건을 가지고 실제 실용화 가능성을 판별하는 실험을 수행하였다.
Coastal and fishing facilities are gradually deteriorating in function due to the continual accumulation of soil sediments, which has affected local economic activities. Currently, there are many methods to remove soil sediments, but these methods are either a temporary solution or require a repetitive removal of the soil sediments, which is a huge financial burden for the maintenance of the facilities. To solve these problems, this study proposed a non-power soil cleaning system and evaluated field applicability by carrying out field model tests. The conditions for the evaluation focused on the drainage-elapsed time and drainage-outflow velocity according to the water level change in the water tank. In the field test, silty clay and sand were separately installed, and sedimentation soil removal test was practiced. As a result, the system was verified to have a sufficient outflow velocity for the removal of soil sediments. In addition, a generalization equation that can be used in different regions of the tide was suggested in this study. These results will greatly contribute to removing soil sediments in ports and dike gate facilities on the southwest coast. Since the system is an eco-friendly technology that does not require additional energy, thus it is expected to contribute to maintenance of sustainable facility performance as well as economic effect in the future.
콘크리트는 압축력에 잘 저항하고 내구성이 우수하여 널리 사용되는 재료이다. 하지만 구조물은 시공 단계에서 주변 환경, 사용되는 재료의 특성에 따라 완공된 후 표면의 균열, 구조물의 침하 등 다양한 하자가 발생하거나 시간이 지남에 따라 콘크리트 구조물 표면에 결함이 발생한다. 그대로 방치하면 구조물에 심각한 손상을 초래하기 때문에 안전 점검을 통해 검사해야 한다. 하지만 전문 검사원들이 직접 조사하기에 비용이 높고 육안으로 판단하는 외관 검사법을 사용한다. 고층 건물일수록 상세한 검사가 힘들다. 본 연구는 노후화로 인해 콘크리트 표면에 발생하는 결함 중 균열을 탐지하는 딥러닝 기반 시맨틱 세그먼테이션 모형과 해당 모형의 특징 추출과 일반화 성능을 높이기 위한 이미지 어그멘테이션 기법을 개발하였다. 이를 위해 공개 데이터셋과 자체 데이터셋을 결합하여 시맨틱 세그먼테이션용 데이터셋을 구축하고 대표적인 딥러닝 기반 시맨틱 세그먼테이션 모형들을 비교실험하였다. 콘크리트 내벽을 중점으로 학습한 모형의 균열 추출 성능은 81.4%이며, 개발한 이미지 어그멘테이션을 적용한 결과 3%의 성능향상을 확인하였다. 향후 고층 건물과 같이 접근성이 어려운 지점을 드론을 통해 콘크리트 외벽에서 균열을 검출할 수 있는 시스템을 개발함으로써 실질적으로 활용할 수 있기를 기대한다.
Skewness and kurtosis are important higher-order statistics for simulating non-Gaussian wind pressure series on low-rise buildings, but their predictions are less studied in comparison with those of the low order statistics as mean and rms. The distribution gradients of skewness and kurtosis on roofs are evidently higher than those of mean and rms, which increases their prediction difficulty. The conventional artificial neural networks (ANNs) used for predicting mean and rms show unsatisfactory accuracy in predicting skewness and kurtosis owing to the limited capacity of shallow learning of ANNs. In this work, the deep neural networks (DNNs) model with the ability of deep learning is introduced to predict the skewness and kurtosis on a low-rise building. For obtaining the optimal generalization of the DNNs model, the hyper parameters are automatically determined by Bayesian Optimization (BO). Moreover, for providing a benchmark for future studies on predicting higher order statistics, the data sets for training and testing the DNNs model are extracted from the internationally open NIST-UWO database, and the prediction errors of all taps are comprehensively quantified by various error metrices. The results show that the prediction accuracy in this study is apparently better than that in the literature, since the correlation coefficient between the predicted and experimental results is 0.99 and 0.75 in this paper and the literature respectively. In the untrained cornering wind direction, the distributions of skewness and kurtosis are well captured by DNNs on the whole building including the roof corner with strong non-normality, and the correlation coefficients between the predicted and experimental results are 0.99 and 0.95 for skewness and kurtosis respectively.
횡단보도에서 발생하는 교통사고를 해결하기 위한 시도가 계속되고 있지만, 교통사고는 끊임 없이 일어나는 상황이다. 특히 노인, 장애인 등의 교통약자들은 교통사고에 노출될 위험이 더 크다. 이에 대한 문제점을 주의 깊게 볼 필요가 있다. 본 논문은 교통 약자 중 휠체어, 목발과 같은 보조 기구를 이용하는 보행자를 위해 YOLO v5 모델을 활용한 객체 탐지 기술을 제안한다. 휠체어, 목발 사용자 그리고 보행자의 이미지 크롤링, Roboflow와 Mobibity Aids 데이터를 수집하였다. 일반화 성능을 높이기 위해 데이터 증강 기법을 활용하였다. 더하여 Type 2 error를 줄이기 위해 앙상블 기법을 이용하여 Recall이 96%인 높은 성능 수치를 얻었다. 이를 통해 교통약자를 목표로 YOLO 내 단일 모델을 앙상블 할 시, 객체를 놓치지 않고 정확한 탐지 성능을 보여준다는 것을 입증하였다.
스트레스는 감당하기 어려운 외부 또는 내부 요인으로부터 유발되는 것으로 현대 사회의 주요한 문제 중 하나이다. 높은 스트레스가 장기적으로 지속되면 만성적으로 발전할 수 있으며, 건강 및 생활 전반에 큰 악영향을 초래할 수 있다. 그러나 만성적인 스트레스를 겪는 사람들은 자신이 스트레스를 받고 있는지 알아차리기 어렵기 때문에 사전에 스트레스를 인지하고 관리하는 것이 중요하다. 웨어러블 기기로부터 측정된 생체 신호를 이용하여 스트레스를 탐지한다면, 스트레스를 효율적으로 관리할 수 있을 것이다. 그러나 생체 신호를 이용하는 데에는 두 가지 문제점이 있다. 첫째로 생체 신호에서 수작업 특징을 추출하는 것은 바이어스를 발생시킬 수 있으며, 두 번째는 실험 주체에 따라 분류 모델 성능의 변이가 클 수 있다는 것이다. 본 논문에서는 데이터의 핵심적인 특징을 표현할 수 있는 합성곱 오토인코더를 이용해 바이어스를 줄이고 앙상블 학습 중 하나인 소프트 보팅을 이용해 일반화 능력을 높여 성능의 변이를 줄이는 모델을 제안한다. 모델의 일반화 성능을 확인하기 위하여 LOSO 교차 검증 방법을 이용하여 성능을 평가한다. 본 논문에서 제안한 모델은 WESAD 데이터셋을 이용하여 높은 성능을 보여주었던 기존의 연구들보다 우수한 정확도를 보임을 확인하였다.
Yaman S. S. Al-Kamaki;Abdulhameed A. Yaseen;Mezgeen S. Ahmed;Razaq Ferhadi;Mand K. Askar
Computers and Concrete
/
제34권1호
/
pp.93-122
/
2024
One well-known reason for using Fiber Reinforced Polymer (FRP) composites is to improve concrete strength and strain capacity via external confinement. Hence, various studies have been undertaken to offer a good illustration of the response of FRP-wrapped concrete for practical design intents. However, in such studies, the strength and strain of the confined concrete were predicted using regression analysis based on a limited number of test data. This study presents an approach based on artificial neural networks (ANNs) to develop models to predict the strength and strain at maximum stress enhancement of circular concrete cross-sections confined with different FRP types (Carbone, Glass, Aramid). To achieve this goal, a large test database comprising 493 axial compression experiments on FRP-confined concrete samples was compiled based on an extensive review of the published literature and used to validate the predicted artificial intelligence techniques. The ANN approach is currently thought to be the preferred learning technique because of its strong prediction effectiveness, interpretability, adaptability, and generalization. The accuracy of the developed ANN model for predicting the behavior of FRP-confined concrete is commensurate with the experimental database compiled from published literature. Statistical measures values, which indicate a better fit, were observed in all of the ANN models. Therefore, compared to existing models, it should be highlighted that the newly developed models based on FRP type are remarkably accurate.
불필요한 재입원을 예방하기 위해서는 재입원 확률이 높은 집단을 집중적으로 관리할 필요가 있다. 이를 위해서는 재입원 예측모형의 개발이 필요하다. 재원예측 모형을 개발하기 위해 1개 대학병원의 2016년에서 2017년의 2년간의 퇴원요약환자 데이터를 수집하였다. 이때 재입원 환자는 연구 기간 내에 2번 이상 퇴원한 환자라 정의 하였다. 재입원환자의 특성을 파악하기 위해 기술통계와 교착분석을 실시하였다. 재입원 예측 모형개발은 데이터마이닝 기법인 로지스틱회귀모형, 신경망, 의사결정모형을 이용하였다. 모형평가는 AUC(Area Under Curve)를 이용하였다. 로지스틱회귀모형이 AUC가 0.81로 가장 우수하게 나옴에 따라 본 연구에서는 로지스틱 회귀모형을 최종 재입원 예측 모형으로 선정을 하였다. 로지스틱회귀모형에서 선정된 재입원에 영향을 끼치는 주요한 변수는 성별, 연령, 지역, 주진단군, Charlson 동반질환지수, 퇴원과, 응급실 경유 여부, 수술여부, 재원일수, 총비용, 보험종류 등이었다. 본 연구에서 개발한 모형은 1개병원의 2년치 자료이므로 일반화하기에는 제한점이 있다. 추후에 여러 병원 장기간의 데이터를 수집하여 일반화 할 수 있는 모형을 개발하는 것이 필요하다. 더 나아가 계획에 없던 재입원 까지 예측을 할 수 있는 모형을 개발하는 것이 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.