• Title/Summary/Keyword: Model Efficiency

Search Result 9,102, Processing Time 0.031 seconds

Comparative Study of the Supervised Learning Model for Rate of Penetration Prediction Using Drilling Efficiency Parameters (시추효율매개변수를 이용한 굴진율 예측 지도학습 모델 비교 연구)

  • Han, Dong-Kwon;Sung, Yu-Jeong;Yang, Yun-Jeong;Kwon, Sun-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1032-1038
    • /
    • 2021
  • Rate of penetration(ROP) is one of the important variables for maximizing the drilling performance. In order to maximize drilling efficiency, it is necessary to increase the drilling speed, and real-time ROP prediction is important so that the driller can identify problems during drilling. The ROP has a high correlation with the drillstring rotational speed, weight on bit, and flow rate. In this paper, the ROP was predicted using a data-driven supervised learning model trained from the drilling efficiency parameters. As a result of comparison through the performance evaluation metrics of the regression model, the root mean square error(RMSE) of the RF model was 4.20 and the mean absolute percentage error(MAPE) was 9.08%, confirming the best predictive performance. The proposed method can be used as a base model for ROP prediction when constructing a real-time drilling operation guide system.

A Security Metrics Taxonomization Model for Software-Intensive Systems

  • Savola, Reijo M.
    • Journal of Information Processing Systems
    • /
    • v.5 no.4
    • /
    • pp.197-206
    • /
    • 2009
  • We introduce a novel high-level security metrics objective taxonomization model for software- intensive systems. The model systematizes and organizes security metrics development activities. It focuses on the security level and security performance of technical systems while taking into account the alignment of metrics objectives with different business and other management goals. The model emphasizes the roles of security-enforcing mechanisms, the overall security quality of the system under investigation, and secure system lifecycle, project and business management. Security correctness, effectiveness and efficiency are seen as the fundamental measurement objectives, determining the directions for more detailed security metrics development. Integration of the proposed model with riskdriven security metrics development approaches is also discussed.

Unrelated question model with quantitative attribute by stratified double sampling (층화이중추출법에 의한 양적속성의 무관질문모형)

  • 이기성;홍기학
    • The Korean Journal of Applied Statistics
    • /
    • v.8 no.1
    • /
    • pp.27-38
    • /
    • 1995
  • In the surveys of sensitive issues of the population that is composed of several unknown-size stratum, we propose the unrelated question model with quantitative attribute by using stratified double sampling. And, we consider two types of sample allocations under the fixed cost, which are the proportional allocation, the optimum allocation. In efficiency, the proosed model is inferior to the unrelated question model with quantitative attribute by stratified sampling in case of the size of each stratum is known. But we find that efficiency of the proposed model is increased, when the selecting probability of sensitive question p is small and first stage sample size n' is large.

  • PDF

A Study on Heat Source Model to High Efficiency Speed Grinding (고능률 고속연삭에서 열원 모델에 관한 연구)

  • 김남경
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2001
  • An analytical thermal model of HESG(higt efficiency speed grinding) is presented, in which the heat flux to workpiece in grinding zone is modeled as time dependent and moves along a slope decided by contact chord(approximation of con-tact arc). By matching the maximum surface temperature of workpiece derived from this model to the maximum surface temperature of grinding wheel composite as done in Lavins simple thermal model, the relation of maximum surface tem-perature and energy partition of workpiece to grinding speed is obtained. In high speed grinding, as wheel speed increases, energy partition decreases with no regard to table speed.

  • PDF

Theoretical Analysis of a Spark Ignition Engine by the Thermodynamic Engine Model

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.55-60
    • /
    • 2015
  • Recent engine development has focused mainly on the improvement of engine efficiency and output emissions. The improvements in efficiency are being made by friction reduction, combustion improvement and thermodynamic cycle modification. Computer simulation has been developed to predict the performance of a spark ignition engine. The effects of various cylinder pressure, heat release, flame temperature, unburned gas temperature, flame properties, laminar burning velocity, turbulence burning velocity, etc. were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion model for a spark ignition engine running with isooctane as a fuel and predicting its behavior.

Zeroth-Order Shear Deformation Micro-Mechanical Model for Periodic Heterogeneous Beam-like Structures

  • Lee, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.55-62
    • /
    • 2015
  • This paper discusses a new model for investigating the micro-mechanical behavior of beam-like structures composed of various elastic moduli and complex geometries varying through the cross-sectional directions and also periodically-repeated along the axial directions. The original three-dimensional problem is first formulated in an unified and compact intrinsic form using the concept of decomposition of the rotation tensor. Taking advantage of two smallness of the cross-sectional dimension-to-length parameter and the micro-to-macro heterogeneity and performing homogenization along dimensional reduction simultaneously, the variational asymptotic method is used to rigorously construct an effective zeroth-order beam model, which is similar a generalized Timoshenko one (the first-order shear deformation model) capable of capturing the transverse shear deformations, but still carries out the zeroth-order approximation which can maximize simplicity and promote efficiency. Two examples available in literature are used to demonstrate the consistence and efficiency of this new model, especially for the structures, in which the effects of transverse shear deformations are significant.

Model and Field Testing of a Heavy-Duty Gas Turbine Combustor

  • Ahn, Kook-Young;Kim, Han-Seok;Antonovsky, Vjacheslav-Ivanovich
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1319-1327
    • /
    • 2001
  • The results of stand and field testing of a combustion chamber for a heavy-duty 150 MW gas turbine are discussed. The model represented one of 14 identical segments of a tubular multican combustor constructed 1:1 scale. The model experiments were executed at a lower pressure than that in a real gas turbine. Combustion efficiency, pressure loss factor, pattern factor, liner wall temperature, flame radiation, fluctuating pressure and NOx emission were measured at partial and full loads for both model and on-site testing. The comparison of these items in the stand and field test results led to has the development of a method of calculation and the improvement of gas turbine combustors.

  • PDF

Communication-Theoretic Analysis of Capture-Based Networks

  • Nguyen, Gam D.;Wieselthier, Jeffrey E.;Ephremides, Anthony
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.243-251
    • /
    • 2012
  • Under the power-based capture model, a transmission is successfully received at the destination, even in the presence of other transmissions and background noise, if the received signal-to-interference-plus-noise ratio exceeds a capture threshold. We evaluate the spectral efficiency of simple multi-user channels by combining the basic capture model with a communication-theoretic model. The result is a more refined capture model that incorporates key system design parameters (such as achievable bit rate, target bit error rate, channel bandwidth, and modulation signal constellations) that are absent from the basic capture model. The relationships among these parameters can serve as a tool for optimizing the network performance.

A Sensitivity Analysis of Centrifugal Compressors Empirical Models

  • Baek, Je-Hyun;Sungho Yoon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1292-1301
    • /
    • 2001
  • The mean-line method using empirical models is the most practical method of predicting off-design performance. To gain insight into the empirical models, the influence of empirical models on the performance prediction results is investigated. We found that, in the two-zone model, the secondary flow mass fraction has a considerable effect at high mass flow-rates on the performance prediction curves. In the TEIS model, the first element changes the slope of the performance curves as well as the stable operating range. The second element makes the performance curves move up and down as it increases or decreases. It is also discovered that the slip factor affects pressure ratio, but it has little effect on efficiency. Finally, this study reveals that the skin friction coefficient has significant effect on both the pressure ratio curve and the efficiency curve. These results show the limitations of the present empirical models, and more resonable empirical models are reeded.

  • PDF

A Study on the Modeling of Transient Response in Automated Manual Transmission for Hybrid Trucks

  • Park, Kyung-Min;Ko, Young-Jin
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.128-137
    • /
    • 2013
  • Modern transmission technologies such as automated manual transmission(AMT) and dual clutch transmission(DCT) are interested to all manufactures due to their fuel efficiency and driver's convenience, especially in a hybrid system. AMT has advantages in that they have a high efficiency of manual transmissions(MT) and offer operation convenience similar to automatic transmissions(AT), but it has some disadvantages in that they have torque gap during gear shift and shift time. To reduce disadvantages, it is necessary to evaluate errors and characteristics as a developing simulation model before experimental verification. The purpose of this study is to develop virtual components and simulate the transient response of AMT. A dynamic AMT model and a control logic for an integrated vehicle model have been developed using Matlab/Simulink as a simulation platform. In this paper, the clutch model to describe the stick-slip transition mode and the transmission model to describe the neutral gear shifting is introduced and compared with each other.