• Title/Summary/Keyword: Model Co-construction

Search Result 603, Processing Time 0.032 seconds

A Practical Estimation of Static Stability of a Hovercraft

  • Park, Sun-Ho;Heo, Jae-Kyung;Yu, Byeong-Seok
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.3
    • /
    • pp.27-35
    • /
    • 2006
  • The static stability of a high-speed hovercraft is estimated by model tests, simplified restoring moment equations and CFD. Well-known methods to increase the stability of hovercrafts are introduced. Roll and pitch moments of a scaled model with a skirt system are measured over inclination angles. The tests are performed on cushion at zero speed both on-land and over-water. To predict the static stability performance, simple restoring moment equations and CFD approach are introduced. Both shows a quantitative difference from the model test results, however, could be used as a design tool for relative comparison prior to model tests.

Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters

  • Zhao, Zhilong;Chen, Simin;Zhang, Dengke;Peng, Bin;Li, Xuyang;Zheng, Qian
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • The undrained shear strength of soil is considered one of the engineering parameters of utmost significance in geotechnical design methods. In-situ experiments like cone penetration tests (CPT) have been used in the last several years to estimate the undrained shear strength depending on the characteristics of the soil. Nevertheless, the majority of these techniques rely on correlation presumptions, which may lead to uneven accuracy. This research's general aim is to extend a new united soft computing model, which is a combination of random forest (RF) with grasshopper optimization algorithm (GOA) to the pile set-up parameters' better approximation from CPT, based on two different types of data as inputs. Data type 1 contains pile parameters, and data type 2 consists of soil properties. The contribution of this article is that hybrid GOA - RF for the first time, was suggested to forecast the pile set-up parameter from CPT. In order to do this, CPT data and related bore log data were gathered from 70 various locations across Louisiana. With an R2 greater than 0.9098, which denotes the permissible relationship between measured and anticipated values, the results demonstrated that both models perform well in forecasting the set-up parameter. It is comprehensible that, in the training and testing step, the model with data type 2 has finer capability than the model using data type 1, with R2 and RMSE are 0.9272 and 0.0305 for the training step and 0.9182 and 0.0415 for the testing step. All in all, the models' results depict that the A parameter could be forecasted with adequate precision from the CPT data with the usage of hybrid GOA - RF models. However, the RF model with soil features as input parameters results in a finer commentary of pile set-up parameters.

A Prediction Model of CO2 Emissions for Construction Equipment Using Curve Fitting (Curve Fitting을 이용한 건설장비 CO2 배출량 예측 모델)

  • Noh, Jaeyun;Kim, Yujin;Lee, Jiyeon;Lee, Minwoo;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.107-108
    • /
    • 2020
  • The severity of the global climate crisis is increasing due to greenhouse gases caused by human activities. As a result, countries and industries are making efforts to reduce carbon dioxide emissions, the biggest cause of global warming. Many studies have been conducted to predict carbon emissions in the construction sector to reduce this, but they have not actually produced a highly usable formula in the field. Therefore, the two variables 'Curve Fitting' were performed based on the data of excavators and trucks measured at the field. As a result, we have obtained a carbon dioxide emission prediction model for construction equipment, and we would like to use it to help establish an eco-friendly process plan.

  • PDF

A Study of Learning Organization Model of Construction Organization based the CoP(Community of Practice) (Community of Practice(CoP)를 기반으로 하는 건설조직의 학습조직 모델에 관한 연구)

  • Lee Tai Sik;Lee Won Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.479-482
    • /
    • 2001
  • Construction industry included speciality compare with others industry. Systemically approach and enterprise cultural approach is required in order to perform Knowledge Management in construction industry. But, most of construction enterprise immersed in system approach to perform Knowledge Management, in this reason caused failure of Knowledge Management. To resolve the structural contradiction, Learning organization based the Community of Practice(CoP) is studied in this paper.

  • PDF

A MODEL OF RISK MANAGEMENT PLAN AND SYSTEM FOR THE CONSTRUCTION PHASE

  • Seon-Gyoo Kim;Chan-Jeong Park ;Moon-Serk Yang;Jin-Bong Kim ;Hyung-John Shin
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.341-346
    • /
    • 2005
  • After the IMF shock, some major construction companies in Korea have been motivated to avoid and mitigate various risk factors which could be critical and catastrophic events to corporate revenue and organization internally or externally. It means that they are trying to introduce and set up a risk management plan and system suitable to their organization and culture. L construction co. ltd. is one of major construction companies that have been searching methodologies or technologies to manage various risk factors surrounding corporate marketing and project operation. This paper presents an unique approach to develop a model of risk management plan and system suitable to L construction itself focused on the construction phase.

  • PDF

Development of prediction methodology from CO2 emissions of construction equipment based multiple linear regression (다중선형회귀분석 기반 건설장비 이산화탄소 배출량 예측모델 개발)

  • Gwon, Jae-Min;Lee, Jae-Hak;Jo, Min-Do;Choi, Young-Jun;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.38-39
    • /
    • 2019
  • Environmental problems caused by GHG emitted by various industries are emerging around the world, and accordingly, relevant regulations are being applied by countries around the world. Korea is operating a carbon credit system that trades GHG in industry for money, which is expected to be applied to the construction industry. In addition, construction equipment using fossil fuels accounts for the largest portion of $CO_2$ emissions in the construction industry, and the importance of $CO_2$ reduction and prediction is increasing. However, there is a lack of data on the directly measured $CO_2$ emissions of construction equipment and there is no accurate methodology for measuring methods. Therefore, in this study, independent variables were derived based on the $CO_2$ emission data. In addition, multiple linear regression is performed for each independent variable to derive a predictive model of carbon dioxide emission by work type of construction equipment. It is expected that the construction process plan based on environmental factors in the construction industry can be established in the future.

  • PDF

Effect of thickness stretching and multi-field loading on the results of sandwich piezoelectric/piezomagnetic MEMS

  • Xiaoping Zou;Gongxing Yan;Wangming Wu;Wenjie Yang;Weiwei Shi;Yuhusun Sun
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.485-495
    • /
    • 2023
  • Bending static and stress investigation of a microplate of piezoelectric/piezomagnetic material subjected to combined multifield loading. Shear deformable as well as thickness stretched model is used for derivation of the kinematic relations. Multi field governing equations are derived analytically through principle of virtual work. the results are analytically obtained analytically including magnetic/electric potentials, displacement and stress components with variation in multifield loading parameters.

Development of Productivity-based Estimating Tool for Fuel Use and Emissions from Earthwork Construction Activities

  • Hajji, Apif M.;Lewis, Michael Phil
    • Journal of Construction Engineering and Project Management
    • /
    • v.3 no.2
    • /
    • pp.58-65
    • /
    • 2013
  • Earthwork activities are typically performed by heavy duty diesel (HDD) construction equipment that consumes large quantities of diesel fuel use and emits large quantities of pollutants, including nitrogen oxides (NOx), particulate matters (PM), hydrocarbon (HC), carbon monoxide (CO), and carbon dioxide ($CO_2$). This paper presents the framework for a model that can be used to estimate the production rate, activity duration, total fuel use, and total pollutants emissions for earthwork activities. A case study and sensitivity analysis for an excavator performing excavations are presented. The tool is developed by combining the multiple linear regressions (MLR) approach for modeling the productivity with the EPA's NONROAD model. The excavator data from RSMeans Heavy Construction Data were selected to build the productivity model, and emission factors of all type of pollutants from NONROAD model were used to estimate the total fuel use and emissions. The MLR model for the productivity rate can explain 92% of the variability in the data. Based on the model, the fuel use and emissions of excavator increase as the trench depth increase, but as the bucket size increase, the fuel use and emissions decrease.

A CASE STUDY OF CONSTRUCTION ENGINEERING FOR CABLE SUPPORTED BRIDGE BY COLLABORATIVE SYSTEM

  • Jung-Min Nam;Sung-Ho Kim;Jae-Hong Kim
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.586-590
    • /
    • 2011
  • This paper presents the case study of the CE by collaborative system and proposes a model of the CM group for the cable supported bridge. The cable supported bridges have a large project scale and need a high level of construction method. Therefore an advanced construction management system is required for successful completion of project. The construction management (CM) group which control design management, construction plan, subcontract, technical support and R&D is organized for the cable supported bridge project. The CM group established a collaborative system with construction site and drew an effective management of cost, process, quality, safety for each project. Furthermore, the CM group established the procedure of construction management based on the construction engineering (CE) items and performed the project management on the construction phase. Efficiency of cost reduction and site control is maximized by using a collaborative system.

  • PDF