• Title/Summary/Keyword: Model Car

Search Result 1,394, Processing Time 0.03 seconds

Car-to-Car Offset Frontal Impact Modeling using Spring-Mass Model (Spring-Mass 모델을 이용한 차대차 부분정면충돌 모델링)

  • Lim, Jaemoon;Lee, Kwangwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • The objective of this study was to construct the spring-mass models for the car-to-car offset frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from the offset frontal crash test. The spring-mass model of the passenger car could effectively approximate the crash characteristics for the offset frontal barrier impact and the car-to-car offset frontal impact scenarios.

Overlapping Decentralized Robust EA Control Design for an Active Suspension System of a Full Car Model (전차량의 능동 현가 장치 제어를 위한 중복 분산형 견실 고유구조지정 제어기 설계)

  • 정용하;최재원;김영호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.217-217
    • /
    • 2000
  • A decentralized robust EA(eigensoucture assignment) controller is designed for an active suspension system of a vehicle based on a full car model with 7-degree of freedom. Using overlapping decomposition, the full car model is decentralized by two half car models. For each half car model, a robust eigenstructure assignment controller can be obtained by using optimization approach. The performance of the decentralized robust EA controller is compared with that of a conventional centralized EA controller through computer simulations.

  • PDF

Integrated Suspension Control Using a Reduced Full-Car Model : HILS and Experiments (축소된 전차량 모델을 이용한 현가장치의 통합제어: HILS 및 실차실험)

  • 홍경태;손현철;이동락;홍금식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.105-105
    • /
    • 2000
  • In this paper, an integrated control of the semi-active suspension system using a reduced full-car model is investigated. By including the reduced full-car dynamics in the control law, the semi-act ive suspension system is able to control not only the vertical acceleration but also the roll and pitch mot ions of the car body, which is not Possible with a quarter-car model or a half-car model. The damping forces for the semi-active dampers are designed to track the damping forces of the skyhook controller designed from the reduced full car dynamics. Computer simulations and experimental results using a real car are also included.

  • PDF

Estimation of Cognition Model considering Fuzziness of Car-Following Cognitive Information (차간거리인지정보의 애매성을 고려한 인지모델 추정)

  • 남궁문;정이균;김경태;서승환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.159-164
    • /
    • 1995
  • Driving maneuver in car following are affected by not only the factors related to road structure and traffic condition, but also the factors related to driver's cognition to them. So the aim of this research this to model the relation of driver's cognition for car-following distance considering driver's fuzziness for imformation cognition, As a result, driver's cognition of car-following distance model with fuzzy number is proposed. The 'width', which characterizes the fuzzy number can introduce car-following informtion into the model.

  • PDF

Performance Evaluation of Car Model Recognition System Using HOG and Artificial Neural Network (HOG와 인공신경망을 이용한 자동차 모델 인식 시스템 성능 분석)

  • Park, Ki-Wan;Bang, Ji-Sung;Kim, Byeong-Man
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.5
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, a car model recognition system using image processing and machine learning is proposed and it's performance is also evaluated. The system recognizes the front of car because the front of car is different for every car model and manufacturer, and difficult to remodel. The proposed method extracts HOG features from training data set, then builds classification model by the HOG features. If user takes photo of the front of car, then HOG features are extracted from the photo image and are used to determine the model of car based on the trained classification model. Experimental results show a high average recognition rate of 98%.

Operation Control Model of Lift Car to Reduce Worker Lifting Time in Tall Building Construction (초고층 건축공사의 작업원 양중시간 단축을 위한 리프트 카 운행제어 모델)

  • Nam, Chulu;Kwon, Jaebeom;Kim, Taehoon;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.160-161
    • /
    • 2016
  • In tall building construction, lift car for worker lifting is a critical factor for construction productivity. To reduce worker lifting time, existing researches have been conducted on lift car planning. While, research on lift car operation is insufficient. For the efficient reduction of worker lifting time, lift car operation control is needed with lift car planning. Therefore, this research suggests operation control model of lift car to reduce worker lifting time. According to the result of a model test, the operation control model contributes to reasonable reduction of worker lifting time.

  • PDF

Vibration Characteristics of Automobile Suspension System considering Tire Design Parameters (타이어 설계인자를 고려한 자동차 현가계의 진동특성)

  • Lee, Tae-Keun;Kim, Byoung-Sam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.805-810
    • /
    • 2004
  • The model is verified thorough simulations and experiments. And then the developed model is applied to a half car model and automobile vibrations are analyzed. The effects of tire design parameters on the automobile vibration energy are investigated. The results from laboratory and field tests confirm the validity of the analytical model. The 17-DOF half-car model is built to analyze the automobile vibration. The characteristics of the nonlinear model for a shock absorber are applied to this model. The results from the present 17-DOF half car model incorporating the analytical tire model with tire design parameters, are compared with a 5-DOF half car model where the tire is modeled with linear springs. The results of the 17-DOF model are closed to experimental results. Using the 17-DOF model, the influences of tire design parameter are considered. According to the results of analyses, the vibrations at seat/body/wheel are predicted by simulation and experiment.

  • PDF

Car-to-Car Frontal Impact Modeling using Spring-Mass Model (Spring-Mass 모델을 이용한 차대차 정면충돌 모델링)

  • Lim, Jaemoon;Jung, Geunseup
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.8-14
    • /
    • 2015
  • The objective of this study was to construct the spring-mass models for the car-to-car frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from US-NCAP frontal crash tests. The spring-mass models of a compact car and a midsize car could effectively approximate the crash characteristics for the full frontal barrier impact and the car-to-car frontal impact scenarios. Compared to the barrier crash tests, the dummy injuries of midsize car decreased, while the dummy injuries of compact car increased, under the frontal car-to-car crash circumstances.

Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step (DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석)

  • Jang, Woon-Geun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.2
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF

Overlapping Decentralized Robust EA Control Design for an Active Suspension System of a Full Car Model (전차량의 능동 현가장치 제어를 위한 중복 분산형 견실 고유구조 지정 제어기 설계)

  • Jung, Yong-Ha;Choi, Jae-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.206-213
    • /
    • 2001
  • An overlapping decentralized robust EA(eigenstructure assignment) controller is designed for an active suspension system of a vehicle based on a full car model with 7-degree of freedom. Using overlapping decomposition, the full car model is decentralized by two half car models. For each half car model, an effective and disturbance suppressible controller can be obtained by assigning appropriately a left eigenstructure of the system. The performance of the proposed overlapping decentralized robust EA controller is compared with that of a conventional centralized EA controller through computer simulations.

  • PDF