• 제목/요약/키워드: Model Based Predictive control

검색결과 314건 처리시간 0.033초

데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측 (Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House)

  • 최락영;채영현;이세연;박진선;홍세운
    • 한국농공학회논문집
    • /
    • 제64권5호
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

부분최소제곱법 모델의 파라미터 추정을 이용한 화학공정의 이상진단 모델 개발 (The Development of a Fault Diagnosis Model based on the Parameter Estimations of Partial Least Square Models)

  • 이광오;이창준
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.59-67
    • /
    • 2019
  • Since it is really hard to construct process models based on prior process knowledges, various statistical approaches have been employed to build fault diagnosis models. However, the crucial drawback of these approaches is that the solutions may vary according to the fault magnitude, even if the same fault occurs. In this study, the parameter monitoring approach is suggested. When a fault occurs in a chemical process, this leads to trigger the change of a process model and the monitoring parameters of process models is able to provide the efficient fault diagnosis model. A few important variables are selected and their predictive models are constructed by partial least square (PLS) method. The Euclidean norms of parameters of PLS models are estimated and a fault diagnosis can be performed as comparing with parameters of PLS models based on normal operational conditions. To improve the monitoring performance, cumulative summation (CUSUM) control chart is employed and the changes of model parameters are recorded to identify the type of an unknown fault. To verify the efficacy of the proposed model, Tennessee Eastman (TE) process is tested and this model can be easily applied to other complex processes.

퍼지뉴럴 네트워크와 자기구성 네트워크에 기초한 적응 퍼지 다항식 뉴럴네트워크 구조의 설계 (The Design of Adaptive Fuzzy Polynomial Neural Networks Architectures Based on Fuzzy Neural Networks and Self-Organizing Networks)

  • 박병준;오성권;장성환
    • 제어로봇시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.126-135
    • /
    • 2002
  • The study is concerned with an approach to the design of new architectures of fuzzy neural networks and the discussion of comprehensive design methodology supporting their development. We propose an Adaptive Fuzzy Polynomial Neural Networks(APFNN) based on Fuzzy Neural Networks(FNN) and Self-organizing Networks(SON) for model identification of complex and nonlinear systems. The proposed AFPNN is generated from the mutually combined structure of both FNN and SON. The one and the other are considered as the premise and the consequence part of AFPNN, respectively. As the premise structure of AFPNN, FNN uses both the simplified fuzzy inference and error back-propagation teaming rule. The parameters of FNN are refined(optimized) using genetic algorithms(GAs). As the consequence structure of AFPNN, SON is realized by a polynomial type of mapping(linear, quadratic and modified quadratic) between input and output variables. In this study, we introduce two kinds of AFPNN architectures, namely the basic and the modified one. The basic and the modified architectures depend on the number of input variables and the order of polynomial in each layer of consequence structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the AFPNN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed AFPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.

A predictive nomogram-based model for lower extremity compartment syndrome after trauma in the United States: a retrospective case-control study

  • Blake Callahan;Darwin Ang;Huazhi Liu
    • Journal of Trauma and Injury
    • /
    • 제37권2호
    • /
    • pp.124-131
    • /
    • 2024
  • Purpose: The aim of this study was to utilize the American College of Surgeons Trauma Quality Improvement Program (TQIP) database to identify risk factors associated with developing acute compartment syndrome (ACS) following lower extremity fractures. Specifically, a nomogram of variables was constructed in order to propose a risk calculator for ACS following lower extremity trauma. Methods: A large retrospective case-control study was conducted using the TQIP database to identify risk factors associated with developing ACS following lower extremity fractures. Multivariable regression was used to identify significant risk factors and subsequently, these variables were implemented in a nomogram to develop a predictive model for developing ACS. Results: Novel risk factors identified include venous thromboembolism prophylaxis type particularly unfractionated heparin (odds ratio [OR], 2.67; 95% confidence interval [CI], 2.33-3.05; P<0.001), blood product transfusions (blood per unit: OR 1.13 [95% CI, 1.09-1.18], P<0.001; platelets per unit: OR 1.16 [95% CI, 1.09-1.24], P<0.001; cryoprecipitate per unit: OR 1.13 [95% CI, 1.04-1.22], P=0.003). Conclusions: This study provides evidence to believe that heparin use and blood product transfusions may be additional risk factors to evaluate when considering methods of risk stratification of lower extremity ACS. We propose a risk calculator using previously elucidated risk factors, as well as the risk factors demonstrated in this study. Our nomogram-based risk calculator is a tool that will aid in screening for high-risk patients for ACS and help in clinical decision-making.

도금 두께 제어시스템의 개발 적용 (Application of Coating Thickness Control System)

  • 최일섭;유승렬;박한구;곽영우;김상준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.892-894
    • /
    • 1995
  • This paper deals with developmeant and application of coating thickness control system in hot dip galvanizing process. According to the line conditions, such as line speed, strip size and target coating weight, a predictive preset model sets the initial oprating conditions. Referring the zine coating informations from the gauge, mean coating value controller adjusts the chamber pressure and horizontal distance between strip and air knife, while coating deviation controller adjusts the lip gap profile of the air knife. All adaptive gains are interactively calculated by numeric models based on the theoretical analysis. The operating result with this system effectively reduces the coating deviation in transverse direction as well as in longitudinal direction.

  • PDF

Derivation Algorithm of State-Space Equation for Production Systems Based on Max-Plus Algebra

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • 제3권1호
    • /
    • pp.1-11
    • /
    • 2004
  • This paper proposes a new algorithm for determining an optimal control input for production systems. In many production systems, completion time should be planned within the due dates by taking into account precedence constraints and processing times. To solve this problem, the max-plus algebra is an effective approach. The max-plus algebra is an algebraic system in which the max operation is addition and the plus operation is multiplication, and similar operation rules to conventional algebra are followed. Utilizing the max-plus algebra, constraints of the system are expressed in an analogous way to the state-space description in modern control theory. Nevertheless, the formulation of a system is currently performed manually, which is very inefficient when applied to practical systems. Hence, in this paper, we propose a new algorithm for deriving a state-space description and determining an optimal control input with several constraint matrices and parameter vectors. Furthermore, the effectiveness of this proposed algorithm is verified through execution examples.

공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석 (K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies)

  • 김욱동;오성권
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

온도와 시간을 주요 변수로 한 냉장 돈육에서의 native isolated Listeria monocytogenes에 대한 성장예측모델 (Predictive Growth Model of Native Isolated Listeria monocytogenes on raw pork as a Function of Temperature and Time)

  • 홍종해;심우창;천석조;김용수;오덕환;하상도;최원상;박경진
    • 한국식품과학회지
    • /
    • 제37권5호
    • /
    • pp.850-855
    • /
    • 2005
  • 본 연구는 냉장돈육에서의 식중독 원인균이면서 냉장온도에서 성장이 가능한 병원성균인 L. monocytogenes에 대한 적절한 위생관리를 제시하기 위하여 포장돈육 작업장 원료돈육에서 분리된 야생균주 L. monocytogenes 이용하여 돈육포장공정 및 유통조건에서의 L. mnocytogenes에 대한 성장예측모델을 제시하고자 실시하였다. 성장실험은 온도 5, 10, 15, $20^{\circ}C$ 시간은 0, 1, 2, 3, 18, 48, 120시간에서 실시하였으며, 이를 바탕으로 온도별 Gompertz value인 A, C, B, M의 값과 Growth kinetic인 exponential growth rate(EGR), generation time(GT), lag phase duration(LPD), maximum population density(MPD)를 산출하였다. GT, LPD는 온도가 상승할수록 그 값이 점점 낮아지는 경향을 나타났으며, EGR의 경우는 반대로 온도가 높아질수록 점점 높아지는 경향을 나타냈다. Gompertz value중 B와 M 값을 이용하여 온도를 주요 control factor로 선정한 반응표면분석(Response surface analysis)을 실시하여 온도에 따른 다항식을 산출하였고 이 식을 Gompertz 식에 적용하여 온도와 시간에 따른 냉장돈육에서의 L. monocytogenes에 대한 성장정도를 예측할 수 있는 성장예측모델을 제시하였다. 개발된 성장예측모델에 대한 검증은 GT, LPD, EGR에 대한 실험값과 예측값의 비교를 통하여 실시하였으며, 그 결과 GT, LPD, EGR 모두 통계적으로 유의하게 나타났다(p<0.01). 따라서 이 모델은 risk assessment 중 exposure assessment를 위한 성장예측모델로 충분히 이용가능 한 것으로 보이며, 추후 냉장돈육 위성관리기준에 대한 과학적 근거자료로 활용될 수 있을 것으로 보인다.

Adaptive Actor-Critic Learning of Mobile Robots Using Actual and Simulated Experiences

  • Rafiuddin Syam;Keigo Watanabe;Kiyotaka Izumi;Kazuo Kiguchi;Jin, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.43.6-43
    • /
    • 2001
  • In this paper, we describe an actor-critic method as a kind of temporal difference (TD) algorithms. The value function is regarded as a current estimator, in which two value functions have different inputs: one is an actual experience; the other is a simulated experience obtained through a predictive model. Thus, the parameter´s updating for the actor and critic parts is based on actual and simulated experiences, where the critic is constructed by a radial-basis function neural network (RBFNN) and the actor is composed of a kinematic-based controller. As an example application of the present method, a tracking control problem for the position coordinates and azimuth of a nonholonomic mobile robot is considered. The effectiveness is illustrated by a simulation.

  • PDF

Mathematical modeling for flocking flight of autonomous multi-UAV system, including environmental factors

  • Kwon, Youngho;Hwang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.595-609
    • /
    • 2020
  • In this study, we propose a decentralized mathematical model for predictive control of a system of multi-autonomous unmanned aerial vehicles (UAVs), also known as drones. Being decentralized and autonomous implies that all members make their own decisions and fly depending on the dynamic information received from other unmanned aircraft in the area. We consider a variety of realistic characteristics, including time delay and communication locality. For this flocking flight, we do not possess control for central data processing or control over each UAV, as each UAV runs its collision avoidance algorithm by itself. The main contribution of this work is a mathematical model for stable group flight even in adverse weather conditions (e.g., heavy wind, rain, etc.) by adding Gaussian noise. Two of our proposed variance control algorithms are presented in this work. One is based on a simple biological imitation from statistical physical modeling, which mimics animal group behavior; the other is an algorithm for cooperatively tracking an object, which aligns the velocities of neighboring agents corresponding to each other. We demonstrate the stability of the control algorithm and its applicability in autonomous multi-drone systems using numerical simulations.