• 제목/요약/키워드: Model Based Predictive control

검색결과 314건 처리시간 0.028초

MODEL PREDOCTIVE CONTROL FOR NONLINRAE SYSTEM

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.934-938
    • /
    • 1989
  • This paper considers the model predictive control (MPC) problems in nonlinear processes or systems. The MPC method determines the control law such that the predicted output based on the identified process model is equal to the reference output which consists of both the process output at current time and the setting value called as the command generator. In this paper, the nonlinear MPC software for a chemical reactor is developed and analized from the point of view of practical applications.

  • PDF

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter

  • Wang, Shuang;Zhu, Wenju;Shi, Jian;Ji, Hua;Huang, Surong
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1547-1558
    • /
    • 2015
  • A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

모델예측제어 기법을 이용한 제지공정에서의 지종교체 제어 (Control of Grade Change Operations in Paper Plants Using Model Predictive Control Method)

  • 김도훈;여영구;박시한;강홍
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2003년도 추계학술발표논문집
    • /
    • pp.230-248
    • /
    • 2003
  • 본 연구에서는 제지공정에서의 wet-end 와 dry section 부분을 통합한 모델을 구하고 이를 바탕으로 하여 지종교체 공정의 모델예측제어 방법을 제안하였다. 폐회로 공정 인식기법을 이용하여 state-space 모델을 구한 후 지종교체 제어를 모사한 결과와 실제 제지공장의 지종교체 운전데이터를 비교 분석하였다. 입력 변수로서 이전까지는 간과되어 왔던 4가지 변수(thick stock, filler flow, speed, steam pressure), 그리고 출력변수로서 3가지 변수(basis weight, ash content, moisture content)를 고려하였으며, output trajectory는 1차 전달함수 형식으로 하여 적용하였다. 모델예측제어 모사결과를 지종교체 운전데이터와 비교하여 본 결과 지종교체 시간이 짧아지고 보다 안정적으로 정상상태에 이르는 것을 확인할 수 있었다. 아울러 모델예측제어로 인하여 지종교체 이후 입력 변수들이 큰 진동이 없이 보다 신속하게 정상상태에 도달함을 확인하였다.

  • PDF

실시간 일정계획 문제에 대한 Control 기반의 매개변수 프로그래밍을 이용한 해법의 개발 (Development of An On-line Scheduling Framework Based on Control Principles and its Computation Methodology Using Parametric Programming)

  • 유준형
    • 제어로봇시스템학회논문지
    • /
    • 제12권12호
    • /
    • pp.1215-1219
    • /
    • 2006
  • Scheduling plays an important role in the process management in terms of providing profit-maximizing operation sequence of multiple orders and estimating completion times of them. In order to takes its full potential, varying conditions should be properly reflected in computing the schedule. The adjustment of scheduling decisions has to be made frequently in response to the occurrence of variations. It is often challenging because their model has to be adjusted and their solutions have to be computed within short time period. This paper employs Model Predictive Control(MPC) principles for updating the process condition in the scheduling model. The solutions of the resulting problems considering variations are computed using parametric programming techniques. The key advantage of the proposed framework is that repetition of solving similar programming problems with decreasing dimensionis avoided and all potential schedules are obtained before the execution of the actual processes. Therefore, the proposed framework contributes to constructing a robust decision-support tool in the face of varying environment. An example is solved to illustrate the potential of the proposed framework with remarks on potential wide applications.

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

  • Xu, Kunshan;Xie, Shaojun
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1608-1617
    • /
    • 2018
  • The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.

Novel Model Predictive Control Method to Eliminate Common-mode Voltage for Three-level T-type Inverters Considering Dead-time Effects

  • Wang, Xiaodong;Zou, Jianxiao;Dong, Zhenhua;Xie, Chuan;Li, Kai;Guerrero, Josep M.
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1458-1469
    • /
    • 2018
  • This paper proposes a novel common-mode voltage (CMV) elimination (CMV-EL) method based on model predictive control (MPC) to eliminate CMV for three-level T-type inverters (3LT2Is). In the proposed MPC method, only six medium and one zero voltage vectors (VVs) (6MV1Z) that generate zero CMV are considered as candidates to perform the MPC. Moreover, the influence of dead-time effects on the CMV of the MPC-based 6MV1Z method is investigated, and the candidate VVs are redesigned by pre-excluding the VVs that will cause CMV fluctuations during the dead time from 6MV1Z. Only three or five VVs are included to perform optimization in every control period, which can significantly reduce the computational complexity. Thus, a small control period can be implemented in the practical applications to achieve improved grid current performance. With the proposed CMV-EL method, the CMV of the $3LT^2Is$ can be effectively eliminated. In addition, the proposed CMV-EL method can balance the neutral point potentials (NPPs) and yield satisfactory performance for grid current tracking in steady and dynamic states. Simulation and experimental results are presented to verify the effectiveness of the proposed method.

유전자 알고리즘을 이용한 예측제어 (Constrained GA-based Predictive Control)

  • Seung C. Shin;Zeungnam Bien
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.732-735
    • /
    • 1999
  • A GA-based optimization technique is adopted in the paper to obtain optimal future control inputs for predictive control systems. For reliable future predictions of a process, we identify the underlying process with an NNARX model structure and investigate to reduce the volume of neural network based on the Lipschitz index and a criterion. Since most industrial processes are subject to their constraints, we deal with the input-output constraints by modifying some genetic operators and/or using a penalty strategy in the GAPC. Some computer simulations are given to show the effectiveness of the GAPC method compared with the adaptive GPC algorithm.

  • PDF

Artificial Intelligence-Based Descriptive, Predictive, and Prescriptive Coating Weight Control Model for Continuous Galvanizing Line

  • Devraj Ranjan;G. R. Dineshkumar;Rajesh Pais;Mrityunjay Kumar Singh;Mohseen Kadarbhai;Biswajit Ghosh;Chaitanya Bhanu
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.228-234
    • /
    • 2024
  • Zinc wiping is a phenomenon used to control zinc-coating thickness on steel substrate during hot dip galvanizing by equipment called air knife. Uniformity of zinc coating weight in length and width profile along with surface quality are most critical quality parameters of galvanized steel. Deviation from tolerance level of coating thickness causes issues like overcoating (excess consumption of costly zinc) or undercoating leading to rejections due to non-compliance of customer requirement. Main contributor of deviation from target coating weight is dynamic change in air knives equipment setup when thickness, width, and type of substrate changes. Additionally, cold coating measurement gauge measure coating weight after solidification but are installed down the line from air knife resulting in delayed feedback. This study presents a coating weight control model (Galvantage) predicting critical air knife parameters air pressure, knife distance from strip and line speed for coating control. A reverse engineering approach is adopted to design a predictive, prescriptive, and descriptive model recommending air knife setups that estimate air knife distance and expected coating weight in real time. Implementation of this model eliminates feedback lag experienced due to location of coating gauge and achieving setup without trial-error by operator.

선형 회분식 공정을 위한 이차 성능 지수에 의한 모델 기반 반복 학습 제어 (Model-based iterative learning control with quadratic criterion for linear batch processes)

  • 이광순;김원철;이재형
    • 제어로봇시스템학회논문지
    • /
    • 제2권3호
    • /
    • pp.148-157
    • /
    • 1996
  • Availability of input trajectories corresponding to desired output trajectories is often important in designing control systems for batch and other transient processes. In this paper, we propose a predictive control-type model-based iterative learning algorithm which is applicable to finding the nominal input trajectories of a linear time-invariant batch process. Unlike the other existing learning control algorithms, the proposed algorithm can be applied to nonsquare systems and has an ability to adjust noise sensitivity as well as convergence rate. A simple model identification technique with which performance of the proposed learning algorithm can be significantly enhanced is also proposed. Performance of the proposed learning algorithm is demonstrated through numerical simulations.

  • PDF

DAPT: 조종 기술의 예측적 인지 모델 (ADAPT: A Predictive Cognitive Model of Piloting Skill)

  • 손영우;김경태;장수왕;김도형
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2005년도 춘계학술대회
    • /
    • pp.9-13
    • /
    • 2005
  • A comprehension-based computational model of pilot action planning called ADAPT is presented to model pilot performance in a flight simulation context. Individual pilots were asked to execute a series of flight maneuvers using a flight simulator, and their eye-scanning, control movements, and flight performance were recorded in a time-synched database. Computational models of each of the 25 individual pilots were constructed, and the individual models simulated execution of the same flight maneuvers performed by human pilots. The time-synched eye-scanning, control movements, and flight performance of individual pilots and their respective models were compared to test ADAPT's predictive validity.

  • PDF