• Title/Summary/Keyword: Model -based Control

Search Result 8,415, Processing Time 0.041 seconds

Dynamic Response Control of a Flexible Wing using Sliding Mode Control (슬라이딩 모드 제어기법을 이용한 유연날개 동적 응답 제어)

  • Lee, Sang-Wook;Suk, Jinyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.522-527
    • /
    • 2013
  • In this study, dynamic response control of a flexible wing such as gust loads alleviation using sliding mode control method is presented. To achieve this purpose, trailing edge control surface of a flexible wing is used as control means generating the aerodynamic control force. Aeroservoelastic CASE) model consisting of aeroelastic plant, control surface actuator model, and gust model depicting the atmospheric turbulence is formulated in the state space. A sliding mode controller based on the estimated state vector is designed for active dynamic response control of flexible wing aeroservoelastic model. The performance of the controller designed is demonstrated via numerical simulation for the representative flexible wing model under atmospheric turbulence loading.

  • PDF

Active Suspension System Control Using Optimal Control & Neural Network (최적제어와 신경회로망을 이용한 능동형 현가장치 제어)

  • 김일영;정길도;이창구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.15-26
    • /
    • 1998
  • Full car model is needed for investigating as a entire dynamics of vehicle. In this study, 7DOF of full car model's dynamics is selected. This paper proposes the output feedback controller based on optimal control theory. Input data and output data from the optimal controller are used for neural network system identification of the suspension system. To do system identification, neural network which has robustness against nonlinearities and disturbances is adapted. This study uses back-propagation algorithm to train a multil-layer neural network. After obtaining a neural network model of a suspension system, a neuro-controller is designed. Neuro-controller controls suspension system with off-line learning method and multistep ahead prediction model based on the neural network model and a neuro-controller. The optimal controller and the neuro-controller are designed and then, both performances are compared through. For simulation, sinusoidal and rectangular virtual bumps are selected.

  • PDF

Development of Integrated Security Control Service Model based on Artificial Intelligence Technology (인공지능 기술기반의 통합보안관제 서비스모델 개발방안)

  • Oh, Young-Tack;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.108-116
    • /
    • 2019
  • In this paper, we propose a method to apply artificial intelligence technology efficiently to integrated security control technology. In other words, by applying machine learning learning to artificial intelligence based on big data collected in integrated security control system, cyber attacks are detected and appropriately responded. As technology develops, many large capacity Is limited to analyzing individual logs. The analysis method should also be applied to the integrated security control more quickly because it needs to correlate the logs of various heterogeneous security devices rather than one log. We have newly proposed an integrated security service model based on artificial intelligence, which analyzes and responds to these behaviors gradually evolves and matures through effective learning methods. We sought a solution to the key problems expected in the proposed model. And we developed a learning method based on normal behavior based learning model to strengthen the response ability against unidentified abnormal behavior threat. In addition, future research directions for security management that can efficiently support analysis and correspondence of security personnel through proposed security service model are suggested.

Control of complex distillation configuration (복합 증류계의 제어)

  • 한명완;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.742-748
    • /
    • 1993
  • The dynamics and control of two complex column configurations (sidestream column with stripper; prcfractionater/sidestream column configuration), which are multivariable interacting and nonlinear, have been studied. A new control scheme developed by Hanand Park(1993) to deal with the nonlinear and multivariable nature of distillation processes has been applied to these complex distillation configurations. The control scheme incorporates a nonlinear wave model into a generic model control framework. An observer based on the nonlinear wave model is used to determine the profile positions of distillation column sections. The control scheme enables tight control of the profile position of each column section that leads to fast stabilization of product compositions.

  • PDF

An anti-swing control for 2 axis overhead cranes (2축 천정 크레인의 무진동 제어)

  • 이호훈;조성근;정연우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1428-1431
    • /
    • 1996
  • This paper proposes an anti-swing control law for a 2 degrees of freedom overhead crane. The dynamic model of a 2 degrees of freedom crane is highly nonlinear and coupled. The model is linearized and decoupled for each degree of freedom of the crane for small motions of the load about the vertical. Then a decoupled anti-swing control law is designed for each degree of freedom of the crane based on the linearized model. The control law consists of a position control loop and an swing angle control loop. The position loop,. is designed based on the loop shaping method and the swing angle loop is designed via the root locus method. Finally, the proposed anti-swing control law is implemented and evaluated on a 2 degrees of freedom prototype crane.

  • PDF

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

Engine Control TCS using Throttle Angle Control and Estimated Load Torque (스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS)

  • 강상민;윤마루;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

On Enhancing Safety of Train-Centric Train Control System using Model-Based Development (차상중심 열차제어시스템 개발에서 모델기반 접근을 통한 안전성 향상에 관한 연구)

  • Choi, Myung-Sung;Kim, Joo-Uk;Han, Seok-Youn;Oh, Se-Chan;Sim, Sang-Hyun;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.573-584
    • /
    • 2016
  • The train control system is a facility to ensure model-based design and safe train operation, and its safety is the most important factor for system introduction, complexity of the design information and traceability etc. Therefore, the model-based design and safety activities regarding the way-side equipment of a train control system is also highlighted. To solve this problem, In this paper, model-based design was carried out first to develop an effective train control system, which is represented by SysML(System Modeling Language). The test scenarios that can take advantage of the design model were created to improve the train safety control system. Case studies of a model-based design of a train-centric train control system were applied to the test scenarios; the results demonstrated its usability. The improved activity over the test highlighted the safety improvement approach, and it is expected to reduce the cost and time in the conceptual design of a future development model-based train control system.

Nonlinear Control of General System based on a Model with Coefficients of State-Depended Representation

  • Nakamura, Masatoshi;Zhang, Tao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.76.1-76
    • /
    • 2002
  • This paper addresses a method for nonlinear controller construction for a general nonlinear system with the separation of controller construction and manipulated values generation. The nonlinear system model is firstly expressed with the coefficients of state-depended representation. The nonlinear control is designed without any approximation based on the model with state-depended representation. At the stage of controller implementation for the nonlinear system, the manipulated values are calculated accurately by use of an algorithm of the numerical analysis. The numerical error for calculating the manipulated value can be reduced to zero by selecting the sampling interval being a small val...

  • PDF

Context Conflicts of Role-Based Access Control in Ubiquitous Computing Environment (유비쿼터스 컴퓨팅 환경의 역할 기반 접근제어에서 발생하는 상황 충돌)

  • Nam Seung-Jwa;Park Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.37-52
    • /
    • 2005
  • Traditional access control models like role-based access control model are insufficient in security needs in ubiquitous computing environment because they take no thought of access control based on user's context or environment condition. In these days, although researches on context-aware access control using user's context or environment conditions based on role-based access control are emerged, they are on the primary stage. We present context definitions md an access control model to provide more flexible and dynamic context-aware access control based on role-based access control. Specially, we describe the conflict problems occurred in the middle of making an access decision. After classifying the conflict problems, we show some resolutions to solve them. In conclusion, we will lay the foundations of the development of security policy and model assuring right user of right object(or resource) and application service through pre-defined context and context classification in ubiquitous computing environments. Beyond the simplicity of access to objects by authorized users, we assure that user can access to the object, resource, or service anywhere and anytime according to right context.