• Title/Summary/Keyword: Mode instability

Search Result 398, Processing Time 0.022 seconds

Acoustic Analysis of KSR-III Combustion Chamber with Various 5-Blade Baffles under Non-Reacting Condition (5-블레이드 배플이 설치된 로켓엔진 연소실에서의 상온음향 해석)

  • Kim, Hong-Jip;Kim, Seong-Ku;Sohn, Chae-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.167-171
    • /
    • 2003
  • Acoustic characteristics of baffled combustion chamber to elucidate suppressing effect of baffle on combustion instability are numerically investigated by linear acoustic analysis. A hub-blade baffle of 5 blades is selected as a candidate one and five variants of baffles with various configuration are designed. Resonant-frequency shift and damping factor are analyzed quantitatively as damping parameters. When the hub is located radially at the pressure node, the decrease of resonant frequency and increase of damping factor in 1R mode are dominant. But sub-1T mode is formed within hub, therefore, there would be a possibility of initiating 1T mode in unbaffled region, which would occur another problem. For smaller hub size, four kinds of axial baffle length is selected. As the axial baffle length increases, resonant frequency shift and increase of damping factor of transverse acoustic modes is obtained. Especially, two close acoustic modes such as 1L and 1T could be overlapped for a certain axial length, resulting in extreme increase of damping factor. The present study based on linear acoustic analysis is expected to be a useful confirming tool to predict acoustic field and design a passive control devices such as baffle and acoustic cavity.

  • PDF

Investigation of Hip Squeak Using Finite Element Modeling with a Friction Curve (마찰곡선을 반영한 인공 고관절 마찰소음 유한요소 해석연구)

  • Nam, Jaehyeon;Park, Kiwan;Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • This study investigated the dynamic instability of a ceramic-on-ceramic artificial hip joint system through complex eigenvalue analysis. We examined the mode-coupling mechanism through eigenvalue sensitivity analysis with the variation of system parameters. In addition, we constructed a finite element model including the negative slope of friction curve for investigating the negative-slope mechanism in the hip squeak problem. The numerical results show that the torsion-dominant mode becomes unstable due to the presence of the negative slope while the axial load is the important factor influencing the negative-slope type instability.

STABILITY OF THE TWO-TEMPERATURE ACCRETION DISK

  • PARK MYEONG-GU
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.1
    • /
    • pp.97-107
    • /
    • 1995
  • The stability of the geometrically thin, two-temperature hot accretion disk is studied. The general criterion for thermal instability is derived from the linear local analyses, allowing for advective cooling and dynamics in the vertical direction. Specifically, classic unsaturated Comptonization disk is analysed in detail. We find five eigen-modes: (1) Heating mode grows in thermal time scale, $(5/3)({\alpha}{\omega})^{-1}$, where alpha is the viscosity parameter and w the Keplerian frequency. (2) Cooling mode decays in time scale, $(2/5)(T_e/T_i)({\alpha}{\omega})^{-1}$, where $T_e\;and\;T_i$ are the electron and ion temperatures, respectively. (3) Lightman-Eardley viscous mode decays in time scale, $(4/3)(\Lambda/H)^2({\alpha}{\omega})^{-1}$, where $\Lambda$ is the wavelength of the perturbation and H the unperturbed disk height. (4) Two vertically oscillating modes oscillate in Keplerian time scale, $(3/8)^{1/2}\omega^{-1}$ with growth rate $\propto\;(H/\Lambda)^2$. The inclusion of dynamics in the vertical direction does not affect the thermal instability, adding only the oscillatory modes which gradually grow for short wavelength modes. Also, the advective cooling is not strong enough to suppress the growth of heating modes, at least for geometrically thin disk. Non-linear development of the perturbation is followed for simple unsaturated Compton disk: depending on the initial proton temperature perturbation, the disk can evolve to decoupled state with hot protons and cool electrons, or to one-temperature state with very cool protons and electrons.

  • PDF

Effect of Nozzle Configuration and Impinging Surface on the Impinging Tone Generation by Circular Jets (충돌면과 노즐의 형상이 원형충돌제트에 의한 충돌순음 발생에 미치는 영향)

  • Im, Jung-Bin;Kwon, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.693-700
    • /
    • 2003
  • The effect of the configuration of the nozzle and the impinging surface on the characteristics of the hole-tones has been experimentally investigated. It is found that the plate-tone is a special case of hole-tones, where the hole diameter is zero. The jet velocity range for hole-tones is divided into the low velocity region associated with laminar jet and the high velocity region with turbulent jet. The frequency of the tone is that for the shear layer instability at the nozzle exit or that attainable by a cascade of vortex pairing process with increase of the impinging distance. When the distance is longer than one diameter the frequency decreases to the terminal value near the preferred frequency of the column mode instability, in the range 0.23< $St_d$<0.53, where $St_d$ is the Strouhal number defined by $fd/U_J$, f the frequency, d the nozzle diameter, and $U_J$ the exit velocity. While the convection speed of the downstream vortex, in the present study, is almost constant at low-speed laminar jet, it increases with distance at high-speed turbulent jet. As the frequency increases, the convection speed decreases in the low frequency range corresponding to the preferred mode, in agreement with the existing experimental data for a free jet.

Investigation on Friction Noise in Beam Structure Under Mode-Coupling by Using Analytical Finite-Element Squeal Model (스퀼 융합모델을 이용한 모드연성에 의한 빔 구조 마찰 소음 연구)

  • Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.545-550
    • /
    • 2014
  • This study provided the analytical finite element method estimating the friction-induced noise on the complex beam structure. The frictional contact model was theoretically constructed and applied to the analytical finite element squeal model. The numerical results showed that the beam structure was excited by the mode-coupling instability of the specific system modes. Also, the direction of friction was shown to influence on the dynamic instability of the modes. Besides, the unstable modal frequencies estimated from the numerical calculation were validated by the experiment of the actual beam structure.

Why Are Cool Structures in the Universe Usually Filamentary?

  • Song, Inhyeok;Choe, Gwang Son;Yi, Sibaek;Jun, Hongdal
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.48.4-48.4
    • /
    • 2019
  • Small-scale shear flows are ubiquitous in the universe, and astrophysical plasmas are often magnetized. We study the thermal condensation instability in magnetized plasmas with shear flows in relation to filamentary structure formation in cool structures in the universe, representatively solar prominences and supernova remnants. A linear stability analysis is extensively performed in the framework of magnetohydrodynamics (MHD) with radiative cooling, plasma heating and anisotropic thermal conduction to find the eigenfrequencies and eigenfunctions for the unstable modes. For a shear velocity less than the Alfven velocity of the background plasma, the eigenvalue with the maximum growth rate is found to correspond to a thermal condensation mode, for which the density and temperature variations are anti-phased (of opposite signs). Only when the shear velocity in the k-direction is near zero, the eigenfunctions for the condensation mode are of smooth sinusoidal forms. Otherwise each eigenfunction for density and temperature is singular and of a discrete form like delta functions. Our results indicate that any non-uniform velocity field with a magnitude larger than a millionth of the Alfven velocity can generate discrete eigenfunctions of the condensation mode. We therefore suggest that condensation at discrete layers or threads should be quite a natural and universal process whenever a thermal instability arises in magnetized plasmas.

  • PDF

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

A Combustion Instability Analysis of a Gas Turbine Combustor Having Closed Acoustic Boundaries at Both Ends (폐음향 경계조건을 갖는 가스터빈 연소기의 연소불안정 해석)

  • Cha, Dong-Jin;Shin, Dong-Myung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.156-164
    • /
    • 2010
  • Combustion instability is a major issue in design of gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use not only the advantages of the transfer matrix method but also well established classic control theories. The approach is applied to a gas turbine combustion system, which shows the validity and effectiveness of the approach.

A Combustion Instability Analysis of a Model Gas Turbine Combustor for Co-generation (열병합발전용 모델 가스터빈 연소기의 연소불안정 해석)

  • Cha, Dong-Jin;Shin, Dong-Myung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1449-1457
    • /
    • 2009
  • Combustion instability is a major issue in design of co-generation gas turbine combustors for efficient operation with low emissions. Combustion instability is induced by the interaction of the unsteady heat release of the combustion process and the change in the acoustic pressure in the combustion chamber. In an effort to develop a technique to predict self-excited combustion instability of co-generation gas turbine combustors, a new stability analysis method based on the transfer matrix method is developed. The method views the combustion system as a one-dimensional acoustic system with a side branch and describes the heat source as the input to the system. This approach makes it possible to use not only the advantages of the transfer matrix method but also well established classic control theories. The approach is applied to a simple co-generation gas turbine combustion system, which shows the validity and effectiveness of the approach.

  • PDF

Origin and formation mechanism of LASCO-C2 post CME blobs observed on 2017 September 10

  • Lee, Jae-Ok;Cho, Kyung-Suk;Lee, Kyoung-Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.41.3-41.3
    • /
    • 2019
  • To find out the origin and formation mechanism of LASCO-C2 post-CME blobs, we investigate 2 LASCO-C2 blobs and 35 low corona blobs observed by K-Cor on 2017 September 10 from 17:11 to 18:58 UT. By visual inspection of a post-CME ray and the locations of low corona blobs in K-Cor and LASCO-C2 images with examining the time-height data of all blobs, we find the following results: (1) The post-CME ray structure is well identified in the K-Cor images than LASCO-C2 ones. (2) Low corona blobs can be classified into two groups according to their formation mechanisms: 27 blobs belong to Group 1, generated by the tearing mode instability near the middles of current sheets as described by Furth et al., 1963; Shibata & Tanuma, 2001; Shen et al., 2011, the others belong to Group 2, formed by the tearing mode instability near the tips of current sheets as shown in Figure 5 of Sitnov et al., 2002. (3) Group 1 has low initial appearance heights <1.30 Rs>, broad speed range (38 ~ 945 km/s), and high accelerations <4,272 m/s2 > than Group 2, which has initial appearance heights <1.72 Rs>, speed range (579 ~ 843 km/s), and accelerations <1,413 m/s2 >. (4) among 8 blobs for Group 2, only 2 blobs are temporally and spatially associated with 2 LASCO-C2 ones and their initial observation heights are 1.93 and 1.79 Rs, respectively. Our results firstly demonstrate that LASCO-C2 blobs form the heights from about 1.7 to 2.0 Rs and they are generated by the tearing mode instability near the tips of current sheets.

  • PDF