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ABSTRACT

The stability of the geometrically thin, two-temperature hot accretion disk is studied. The general
criterion for thermal instability is derived from the linear local analyses, allowing for advective cooling
and dynamics in the vertical direction. Specifically, classic unsaturated Comptonization disk is anal-
ysed in detail. We find five eigen-modes: (1) Heating mode grows in thermal time scale, (5/ 3)(aw)™1,
where alpha is the viscosity parameter and w the Keplerian frequency. (2) Cooling mode decays in time
scale, (2/5)(T./Ti)(aw)™?, where T. and T; are the electron and ion temperatures, respectively. (3)
Lightman-Eardley viscous mode decays in time scale, (4/3)(A/H)?(aw)™!, where A is the wavelength of
the perturbation and H the unperturbed disk height. (4) Two vertically oscillating modes oscillate in
Keplerian time scale, (3/8)'/2w=! with growth rate oc (H/A)?. The inclusion of dynamics in the vertical
direction does not affect the thermal instability, adding only the oscillatory modes which gradually grow
for short wavelength modes. Also, the advective cooling is not strong enough to suppress the growth of
heating modes, at least for geometrically thin disk. Non-linear development of the perturbation is fol-
lowed for simple unsaturated Compton disk: depending on the initial proton temperature perturbation,
the disk can evolve to decoupled state with hot protons and cool electrons, or to one-temperature state
with very cool protons and electrons.
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I. INTRODUCTION

The first quantatative models of accretion disks around black holes were calculated by Shakura and Sunyaev
(1973, hereafter SS73), using ‘a-viscosity’ description for the angular momentum transport. The particular disk
model they constructed is effectively optically thick and geometrically thin. But the disk temperature is too low to
produce the high energy X-rays observed from many binary X-ray sources including Cyg X-1. Moreover, the inner
part of the disk has been found unstable thermally and secularly. Shapiro, Lightman, and Eardley (1976, hereafter
SLE) subsequently found a second type of solution for the accretion disk around black holes: the main cooling
mechanism is unsaturated Comptonization and the plasma is in two-temperature (2T) state. The proton is quite -
hot, T, ~ 10K, and the electron mildly hot, T. ~ 10°K. The disk is effectively optically thin and geometrically
thin. They believed that unstable part of the optically thick disk would change to this high temperature solution,
thereby explaining the hard X-ray spectrum.

As soon as these steady disk solutions were found, their stabilities have been studied through linear anlysis:
Pringle, Rees, and Pacholczyk (1973) discussed the thermal stability of the optically thin disk radiating by thermal
bremsstrahlung. Pringle (1976) derived the condition for thermal stability through simple stability analysis. Shakura
and Sunyaev (1976, hereafter SS76) did thorough study of the SS73 disk, allowing the time dependence in the surface
mass density, finding thermal and viscosly driven secular instabilities wherever the radiation pressure dominates over
the gas pressure. Piran (1978) extended the analysis for more general form of viscosity. He confirmed that most
cooling mechanism with a-viscosity is thermally or secularly unstable.
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Pringle (1976) and Piran (1978) applied these stability anaysis of one-temperature (1T) disk to SLE’s 2T disk
under certain assumptions: the cooling and heating of the electron is assumed to be balanced (Pringle 1976) or
the Compton parameter Y is fixed to be 1 (Piran 1978). They both found SLE’s 2T unsaturated Compton disk
thermally unstable. White and Lightman (1990) also studied the time-dependent behaviour of the 2T disk to find
elctron-positron pair production instability.

However, these studies neglect several potentially important factors: the cooling due to the radial advection, the
expansion and contraction of the disk in the vertical directions, and proton velocity effects in the Coulomb coupling
between protons and electrons.

So in this paper, we study through linear anayses the stability of the gas pressure dominated hot accretion disk
incorporating all the factors. The result is general enough to include any kind of electron cooling function. As an
important example, we apply the result to the classic unsaturated Comptonization disk of SLE.

II. STEADY-STATE SOLUTIONS

We recalculate the classic two-temperature disk solution of Shapiro, Lightman, and Eardley (1975) as the un-
perturbed solution. This disk is vertically averaged, geometrically thin, cooled by unsaturated Comptonization of
soft photons. Proton velocity and relativistic effects are included in the Coulomb coupling formula, which has been
neglected in SLE’s calculation (Stepney 1983).

Steady-state solution satisfies the proton and electron energy equations:

npk(Ty + 1) _ mpk(Ty = Te) (1)
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The three important time scales in equations (1) and (2) are ion heating, Coulomb coupling, and Compton cooling
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respectively, where w = (¢/R,)(r*)~3/2 is the Keplerian frequency, r. = R/R,, Ry = R,cn/2 = GM/c?, o the
viscosity parameter, 0; = kT, /m.c?, 8, = kT,/m.c?, Tc the Compton temperature of the soft-photon radiation
field, i.e., the energy-weighted mean of photon energy, U, the radiation energy density of soft photons.

Since the source of the soft photons is far from trivial in the generic models of high-energy sources, the electron
energy equation (2) is usually replaced by the condition for the unsaturated Comptonization (SLE):

4kT,
¥= () =1 ©

where 7., is the Thomson optical depth in the vertical direction.

Equation (1) and (6) with the angular momentum conservation with zero-stress boundary condition and hydro-
static equilibrium in the vertical direction are numerically solved for the steady state solutions: one of them for
L/Lg =0.1 and a = 0.1 (Lg is the Eddington luminosity.) is shown in Figure 1. Improved Coulomb coupling and
slightly different definition of Y result in higher T, and lower T, than those of SLE’s calculation.
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Fig. 1. The proton and elctron temprature profiles of the steady-state solution of L / Lg = 0.1 and a = 0.1. The thin line show
the original calculation of SLE. ’ :

II1. LINEAR ANALYSES

Time dependent behavior of the disk is studied using linear approaches following SS76. But we do not assume Y =
1 or time-independent electron energy equation for the perturbation. Coulomb coupling is treated more accurately
and the PdV work term, neglected in White and Lightman (1990), as well as the vertical expansion/contraction of
_ the disk and advective cooling due to the radial motion is explicitly included. In the following subsections, linearized
equations are derived and solutions are studied for several limiting cases to gain physical insights. General case is
discussed in the end.

(a) Linearization
The equations to be linearized are the mass diffusion equation and the energy equations for protons and electrons.

ox a 8§ 1 8

vee = Y - Y 2, .,2p2
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We note that the term vgd(PH)/OR in equation (4.6) of SS76 should read vg HOP/GR. But the conclusions of
SS76 is still valid. The symbols have their usual definitions: Q* and Q~ are the heating and cooling functions per
unit surface area (per side) and £ = 2 fOH ndz the surface (number) density, where H is the half-thickness of the
disk and n is the proton (electron) number density.

These equations are to be linearized by the substitution of the following perturbations:

I(R,t) = Z(R)[1 {((R, ) TRt =T(R)1+4(R1)]; Te(R,t)=T(R)[l+¢(R,1)], (10)

where X(R), H(R), To(R), and T.(R) are the unperturbed quantities, which change over the length scale R. To
simplify the notations, we use superscript ‘0’ only when there is possibility of confusion.
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Heating of protons per unit surface area due to the friction is (S573),

QF = —3WheRom = Q3 O)1+ o+ ) (1)

where Q;," (0) is the value of Q‘; in unperturbed solution. Electrons and protons are coupled by Coulomb interaction’
alone and

_ . 1+ (6* 1/2
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where T+ = T, + T, and T~ = T, — T.. The effect of proton s thermal velocity is incorporated through 6* = 67 +9..
However, we only consider the case where f; + 6. < 1, otherwise pair processes should be considered (see White &
Lightman 1990 for pair-induced instability). Electron cooling is parametrized to deal with various cooling situations,

Q7 = Q- (01 +ko +1y +mg), - (13)
where
b= omnQ; = olnQ; D om= onQ7
= 8InX lgoge,re’ T OInTy IzomeTo’ ~ dInT, |zo,mo,12’

Unsaturated Comptonization of soft-photons (with fixed soft-photon energy density) corresponds to k = 1, I = 0,
m = 1 and optically thin bremsstrahlung to k = 2,1 = —1/2, m = 1/2. If Q; has a functional form @, = H nd f(T.),
then k = 6, j = (1 — 6)/2, and we expect § > 0 and m > 0 in most optically thin coolings.

(b) With No Perturbation in T

When no perturbation in £ is assumed, i.e., ¢ = 0, the anlysis of the linearized equations become quite sim-
ple. This turns out to be not a bad assumption when studying only the thermal stability because including the
perturbation in ¥ will introduce secular, i.e., Lightman-Eardley type, mode which has much longer time scale than
thermal time scales (see Pringle 1976 for similar assumption). We also assume hydrostatic equilibrium in the vertical
direction. '

Under this assumption, the linearized form of equations (8) and (9) for T > T. cases are

oY _ 3 1 36;
%= (G i@e a5 "
8¢ .11 365 36,
5 =t (G- 35 ~ 0= (m+ 559
where t;, = (aw)~! and t, = (8./6p)tn < ts. This is a linear autonomous system whose generic form is
Y=MY  withY= (:ﬁ) (15)
and has a general solution
Y(t) = c1 V1 exp(Q4t) + ca Vg exp(Qat), (16)

where ¢; and c; are the arbitrary constants, Vi and V3 the eigenvectors of matrix M, and §; and {2, the corre-
sponding eigenvalues, satisfying

340,

367
29*)

PGS

0*
0?2 + [t‘l( + ] Q+ (thtc)‘ [ 3+3—-m-— 4m5&] =0. (17)
This dispersion equation always has two real roots for Q as long as t./t, = Te/T, < 1: If —3+31—m—4m(8;/6.) < 0

in addition, ©, > 0 and 9, < 0, and the disk has one growing mode and one decaying mode. Otherwise, Q; < 0 and
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2, < 0, and the disk has two decaying modes. Most optically thin cooling mechanisms of the form Q; = Hn’f(T)
with § > 0 and dInf/dInT, > 0, including unsaturated Compton cooling and bremsstrahlung, give one growing and
one decaying mode.
Solving equation (17) gives the growth/decay rate for each mode,
3, :4m+3(1 -1 —-m)(8./6%) 1
e e ’
% mr @@ T OE/o%h)

32%) +0(0./8,1),

Q=
(18)
Q=7 (m+

which has the corresponding eigen solution,

vy 1+ 2mé6*/8. -1
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The first mode grows in heating time scale, Q7! ~ ¢, and the second mode decays in cooling time scale, Q3 b e —t..
In hot 2T disk, the latter mode has a much shorter time scale and is superposed onto the heating mode. Depending
on the values of (67 /0¢), 1, and m, sign of ¢ can be equal to or different from that of ¢ for the growing mode.

Take the unsaturated Compton cooling (I = 0 and m = 1) for example. The coefficient for ¢ in growing mode
1+4(2/3)m8* /6. > 0, but that for ¢, 1—(2/3)6* /6. = 1/3—(2/3)(Tp/Te)(me/my), can be either positive or negative
depending on the value of T, /T.: If T, /T. < (1/2)m,/m., electrons are heated when protons are heated, and cooled
when protons cooled. However, if T,/T. > (1/2)my/m., electrons get cooled when protons are being heated, and
heated when protons cooled. So it is possible that the disk can puff up while electrons are being cooled. This
interesting property is due to the effect of the proton temperature in the Coulomb coupling: if protons are too hot,
proton velocity become significant, and coupling gets weaker transferring less energy.

Comparison of the components of Vi = (V1,4,V1,¢4) and V3 = (V4,4, V1,4) in equation (19) shows how the time-
dependent behaviour depends on the initial conditions. Suppose some initial value 1 and @q at ¢ = 0. Under the
condition [Vz. 4| > Vi ¢l, [Vi,els [Vauls 1 = Vlj‘;zpo and ¢z =~ (Vi,yV2,4) 1 (=V1,¢%0 + Va,4d0). So c; is basically
- determined by 1. But the solution is solely determined by the growing mode after a fraction of ¢5, whose amplitude
is ¢;. Thus, we can see that time-dependent behaviour is determined by the initial value of proton temperature
alone: if protons are heated above the equilibrium value, proton temperature keeps increasing (disk puffing up), and
if cooled below the equilibrium value, it keeps decreasing (disk collapsing). Electron temperature just follows proton
temperature in the same way or in the opposite way according to the relative sign between V; , and V4.

Similarly, we can write down more general criterion for the thermal instability for hot 2T (8, > 6.) disk with

Coulomb coupling,
onQ  alnQ; olnQ} dnQ7 OnQg
3 (01nTp - alnTp) + (2 BT, ~ 1) BInT, 2_ (6lnT + 1) 0. (20)

This is more complex condition than that in 1T case, 8lnQ*/0InT > dlnQ~ /8InT. Standard a disk corresponds to
OlnQf /0InT;, = 1.

(¢) With Perturbation in ¥

Now we allow the surface density £ to be perturbed but still assuming hydrostatic equilibrium. Linearized form
of the mass conservation equation under the assumption H € R is

%=1 Hzaa;z(”%”ﬂ*%’:)’ (21)
that of the proton energy equation
e b
—[ <——— S0+ QR v v 324
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and that of the elctron energy equation .
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(23)

The equations (21)-(23) are to be solved by assuming o, ¥, and ¢ to have exponential time dependence and
sinusoidal radial dependence of wavelength A satisfying H <« A <« R (SS76):

o(R,t) = e sin (f) & Y(R,t)=eMsin ( ) ¥ ¢(R,t) = eMsin ( ) ®, | (24)

where 7, 1, and ¢ are constants locally because we are looking at the short-wavelength modes. This approach is
not any different from the direct method used in section §3.2.

Substituting the functional forms (24) into equations (21)—(23) and demanding the set of equations to have
non-trivial solutions gives cubic dispersion equation‘ for Q.

0*

12(—) [23(£) -—3(3+I)+3(3—+—£)m+24§——18TT ot 18—— (—)
9 9Tt T+ 69T+6; 69T+,
+[{-"°-7’ R L e ¥ A% v D (v

27, T+ T
27(T l———m)+9( 2+—l+—m)——

2
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sV, 2 T T T o

45 T+ T+ T 9,71+ T+ T+
T(Tpl v m) — 97k +3 (———-1+—m)—

In the limit H < A, the equation reduces to equation (17), with an additional zero-frequency mode. For disks with
unsaturated Compton cooling, it can be proved that equation (25) always has 3 real roots for 2 as long as H < A, by
transforming the equation into special cubic equation and checking the determinant. A negative root with smaller
absolute value correspond to the slowly decaying viscous mode (Lightman & Eardley 1974). Another negative root
with larger absolute value is the fast decaying cooling mode and the positive root the growing heating.mode. The
other cooling mechanisms, like any of optically thin cooling mechanisms, also produce similar stability behaviors. It
appears that the advective cooling is not sufficient to suppress the thermal instability.

(d) With Disk Expansion/Contraction

In all previous linear stability anaysis, hydrostatic equilibrium in vertical direction is always assumed under the
justification that the dynamical time scale in the vertical direction, t5y4, is shorter than the heating time scale, t5,
by the factor a. However, for o not much smaller than 1, the two time scales become comparable. Moreover, the
cooling time scale, ., is shorter than ¢, by the factor T, /T,, and thus can be shorter than t3,4. Only White and
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Lightman (1990) relaxed hydrostatic assumption in studying the time-dependent behavior of the disk with pairs.
Here we add the same equation for the time-dependent behavior of disk in vertical direction:

8°H GMH P

% "R R (26)
which is linearized to a2h T T

Now the disk height H(t) is not determined by T, and 7., and the electron cooling function should include the
dependency on H: Q; = Q7 (0)(1+ko+jh+I1¢+me) with j = 6lnQ. /3lnH|)::°,T°,Tg‘ Unsaturated Comptonization
of soft-photons gives k = 1, j = 0, I = 0, m = 1 and optically thin bremsstrahlu;g k=2,j=-1,1=0,m=1/2.
For Q; = Hn’f(T.), k= 6,j =1—6, hence ¥ > 0, j <1, and m > 0 in generic optically thin coolings. Assuming
hydrostatic equlibrium is equivalent to maintaining 2h = (T, /T )¢ + (T./T*)¢.

With this description, the mass conservation and energy equations are

3u__ 2 O
a¢ h_10 o,
36t+38t+26t 3 oWl Rz (ut2h)
T+ [ T, T, 36, T. | 36.
+3aw—17 —u+h+(T+—-Tf+- Ly + (T+ T_+§7)¢], (29)
o6 ok 10
3E+3E+26t 6R2(u+2h)
. T Tp
+3awT (2 Ic)u—(1+])h+(l+'i;:'—— )¢ (m +—'+""‘)¢ (30).

Same exponential forms for h, 1, and ¢ yield quintic dispersion equation, which under the assumptions 7T, > T,
f; < 8., and H/A < 1 can be simplified to:

e\’ T, 3./ 9\, 3T, e\® _,T,,. 8 Q)\?
(20) + e () +3e-0 () +o g5 (33
3

T, 3. Q T, 3. 3 3 H\?
-+ a'z—q—,’:-(—-3+ 5] +3I-— m) (E) +a‘2f Z] - §'k+ 51—' Em) (X) = 0

(31

Order of magnitude analyses of the equation show that the first mode is a decaying mode due to the cooling,
Qfow ~ —(m+3/2)(T,/T.), the second one is a growing thermal mode, Q/ow ~ [3 —(3/2)j — 31+ m]/[4 + (8/3)m].
The third one is a decaying viscous mode, Q/aw ~ [—(3/4)j +(3/2)k—(3/2)I+(3/2)m]/[-3+(3/2)j +31—m](H/A)?
with its decay rate depending on A. The fourth and last modes are vertically oscillating modes, Q/aw ~ +[4 +
(8/3)m]1/2/[(3/2) + m)}/2a"1i. .

For general cases, the quintic dispersion equation has to be solved numerically and the roots depend on the value
of H/A. The ©/aw of each mode is shown in Figure 2 for the steady-state solution shown in Figure 1 (L/Lg = 0.1,
a = 0.1; unsaturated Comptonization). The result confirms the dimensional analyses. The decay rate of the cooling
mode is independent of A, yet shorter wavelength viscous mode decays faster. And longer wavelengh heating mode
grows slightly faster that shorter wavelength one. The oscillating mode’s growth rate increases as A decreases. For
perturbation of A > H, there are three growing modes: heating mode grows in thermal time scale of ~ (5/3)(aw)™?
and two oscillating modes in time scale of 3> (aw)~!. So we can see that the expansion/contraction of the disk in
the vertical direction does not affect the basic stability property of the disk, only adding the growing oscﬂlatory
modes.
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Fig. 2. Five modes of perturbation for two-temperature hot accretion disk cooled by unsaturated Comptonization. Mode frequency
 in units of w is expressed as a function of disk height-to-wavelength ratio. The last two frames show the real and imaginary parts
of the oscillating mode frequencies.
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IV. NON-LINEAR BEHAVIOUR

Very important question unanswered so far is the final state of the disk when it gets thermally unstable. To get
some insights, we explicitly integrated the energy equations (8) and (9) without vg term for unsaturated Compton
disk. To deal with low temperature state we used hybrid cooling law of Wandel and Liang (1991) modified for
unsaturated Comptonization. The result is shown in Figure 3: the disk either expands or collpases depending on the
sign of the initial proton temperature perturbation. Upper curves show the proton temperature evolution and lower
ones the electron. Solid curves are for positive initial proton temperature perturbation and dotted for negative one.
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Fig. 3. Evolution of proton and electron temperature. Solid curves represent proton (upper) and electron (lower) temerature when

initial proton temperature perturbation is positive. Dotted curves represent the same when initial proton temperature perturbation is

negative. Time is in unit of t = ((Jﬂ.u)"1 .

Integrations for various initial conditions confirm the linear analysis result (§2b): electron temperature perturba-
tion is unimportant and can have the same or opposite sign as proton temperature perturbation, depending on the
value of T,/T.. However, we also find that electron temperature always decreases after a few t;, regardless of initial
increse or decrease: If protons get heated, the Coulomb coupling gets weaker and electrons get cooled. If protons get
cooled, sometimes electron temperature initially increases slightly due to the stronger coupling as discussed in §2b,
but afterwards protons get cooled too much and transfer of energy decreases, thereby bringing down the electron
temperature.

When protons get heated above the equilibrium value, the proton temperature runs away while the electron tem-
perature drops because Coulomb coupling gets weaker for higher proton temperature yet viscous heating increasing
(solid line in Fig. 3). When the proton temperature reaches the virial temperature, H becomes comparable to R and
the thin disk assumption is violated and our analyses do not apply. But we expect if the expanding disk becomes
geometrically thick the advective cooling will be highly efficient and stabilize the disk as in the spherical accretion.
Recently Chen and Taam (1993), Narayan and Yi (1994), Abramowicz et al. (1994), and Chen et al. (1995) find
the new branch of one-temperature disks stabilized by the advective cooling. The same will be true with 2T disk,
and the final configuration of the perturbed disk will be advection dominated slim/thick 2T disk with near virial
proton temperature while electron temperature being slightly lower than steady-state value.

In the opposite case when protons get cooled, the disk will collpase and become one-temperature (dotted line in
Fig. 3). But it is not the same as ususal SS73 solution because the 2T disk started with different X for given M and,
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therefore, generally no steady-state SS73 solution exists with the same . So the disk does not evolve to stedy-state
solution of SS73. To find out the final configuration of the cooled disk, we need to follow the change of ¥ which
requires to integrate all three equations (7)—(9). That is not attempted in this work. '

V. DISCUSSIONS

We confirm the basic thermal instability of the 2T hot accretion disk of SLE (Pringle 1976, Piran 1978) even
after various improvements in microphysics and dynamics of disk: the disk is unstable mainly by the heating mode.
However, we note that the condition for the thermal instability is not so simple as in one-temperature case. Also,
by considering the dynamics in the vertical directions, we find two oscillating modes which grow in thermal time
scale. The frequency of this mode in the inner region of the disk is probably too high for QPO’s we see in galactic
X-ray sources. But if somehow this mode is being damped in the inner region by some causes, e.g., by advection,
the mode might have the right frequencies at the thermally unstable region of the disk.

Although the result of §3 is valid for any coolings as long as we correctly specify the cooling parameters, the analysis
regarding the unsaturated Comptonization cooling is less than satisfactory, the main reason being our ignorance of
the Comptonizing soft-photons. For the steday-state solutions, we assumed Y = 1, and in time-dependent studies
the soft photon field is assumed to be not affected by other disk variables, e.g., temperature, disk height and so
on. For steady-state solutions, Y = 1 may not be a bad assumption even when we do not know the origin and
spectrum of the soft photons, mainly because we see the spectra of high-energy sources are well approximated by
the unsaturated Comptonization of soft photons. However, to study the stability of the disk in rigour, we have to
specify how the local soft photon radiation field adjusts to the variations of the disk variables. This is unknown
unless we know where the soft photons are produced by what mechanism and how they are transferred to the other
parts of the disk. This basic difficulties exist in any previous works on Comptonized disk as well as this one. We
hope to cope with this problem in future work. -

Another uncertainty is the coupling between protons and electrons. The Coulomb coupling as we describe always
exists. However, if there can be some plasma instablities or other coupling mediated by photons, the proton-electron
coupling will be enhanced. So we artificially strengthened the Coulomb coupling by a factor of 10 or 100 with
the same functional dependence on disk variables. Protons and electrons have factor of few higher temperatures
compared to original Coulomb coupled disk. Yet, the linear analysis produce essentially the same modes. On the
other hand, if T, = T, exactly at any time, i.e., 1T disk, by some unknown process, similar linear anaysis shows

“two modes exist for unsaturated Compton disk: one is decaying viscous mode and the other neutral thermal mode,
2 = 0. Hence, the thermal instability in 2T disk can disappear if electrons and protons are coupled by some process
whose functional form is different from Coulomb one.
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