• 제목/요약/키워드: Mode I Loading

검색결과 212건 처리시간 0.023초

FOAM CORE SANDWICH 구조재의 Mode I 층간분리 파괴인성의 해석에 관한 연구 (A Study on Analysis of Mode I interlaminar Fracture Toughness of Foam Core Sandwich Structures)

  • 손세원;권동안;홍성희
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.81-86
    • /
    • 2000
  • This paper was carried out to investigate the characteristics of interlaminar fracture toughness of foam core sandwich structures under opening loading mode by using the double cantilever beam (DCB) specimens in Carbon/Epoxy and foam core composites. instead of using symmetric geometry of DCB specimen non-symmetric DCB specimen was used to calculate the interlaminar fracture toughness. Three approaches for calculating the energy release rate({{{{ {G }_{IC } }}}}) were compared. Fracture toughness of foam core sandwich structures by autoclave vacuum bagging and hotpress were compared and analyzed. Experiment nonlinear beam bending FEM method were performed. Suggested bonding surface compensation and equivalent area inertia moment was used to calculate the energy release rate in nonlinear analytical results. The conclusions among experimental nonlinear analytical and FEM results was observed. The vacuum bagging method was shown to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}) to be able to substitute method in stead of autoclave without serious loss of Mode I energy release rate({{{{ {G }_{IC }}}}}).

  • PDF

Mode I and Mode II Analyses of a Crack Normal to the Graded Interlayer in Bonded Materials

  • Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1386-1397
    • /
    • 2001
  • In this paper, the plane elasticity equations are used to investigate the in-plane normal (mode I) and shear (mode II) behavior of a crack perpendicular to and terminating at the interface in bonded media with a graded interfacial zone. The interfacial Bone is treated as a nonhomogeneous interlayer with the continuously varying elastic modulus between the two dissimilar, homogeneous semi-infinite constituents. For each of the individual loading modes, based on the Fourier integral transform technique, a singular integral equation with a Cauchy kernel is derived in a separate but parallel manner. In the numerical results, the values of corresponding modes of stress intensity factors are illustrated for various combinations of material and geometric parameters of the bonded media in conjunction with the effect of the material nonhomogeneity within the graded interfacial zone.

  • PDF

유한요소법에 의한 플라스틱 파이프의 저속균열성장 저항성 시험편 균열선단 모드 I 응력확대계수 계산 (Computation of Crack Tip Mode I Stress Intensity Factor of a Specimen for Measuring Slow Crack Growth Resistance of Plastic Pipes Using Finite-Element Method)

  • 최선웅;박영주;서영성
    • 대한기계학회논문집A
    • /
    • 제29권9호
    • /
    • pp.1225-1234
    • /
    • 2005
  • Mode I stress intensity factor $(K_I)$ of Notched Ring Test(NRT) specimen for measuring slow crack growth resistance was found using finite-element method. The theoretical $K_I$ value of NRT was not available in any references and could not be solved analytically. At first, in order to verify the accuracy of the finite-element approach, published $K_I$ values of several cracks were calculated and compared with finite-element results. The results were in good agreement within inherent errors of theoretical $K_I$. Finally the mode I stress intensity factor of NRT was found using 2- and 3-dimensional finite-element methods and expressed as a function of the applied load. This enabled direct comparison of resistance to slow crack growth between NRT and Notched Pipe Test(NPT), which employ different loading regime.

혼합모드 하중 하에서 균열닫힘 평가에 대한 K$_{op}$와 U의 결정과 적용 (Determination and Applications of U and K$_{op}$ for Crack Closure Evaluation under Mixed-mode loading)

  • 송삼홍;서기정;이정무
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.178-185
    • /
    • 2005
  • Crack tip displacement is originated by tensile stress component, s and shear stress component, t on pure Mode I and pure Mode II. The crack tip displacement(CTD) depends on combined types of different two stress components under mixed-mode loading conditions (MMLC). Thus, the analysis of crack tip displacement must be CTD vector, dv which is composition of ds and dt under MMLC. In this paper, various effects of MMLC on the crack closure are studied experimentally. The crack closure magnitude is calculated from the information of crack tip displacement under MMLC. This information has been obtained from the high resolution optical microscope in direct observations of crack displacement behavior at the crack tip. Observed crack tip displacement is analyzed by using CTD vector to determine crack opening load. The various effects of MMLC on the crack closure are explained using crack opening ratio with crack length and mode mixture. The effective stress intensity factor considering crack closure is also discussed.

Effects of loading history on seismic performance of SRC T-shaped column, Part I: Loading along web

  • Wang, J.;Liu, Z.Q.;Xue, J.Y.;Hu, C.M.
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.193-201
    • /
    • 2018
  • This paper describes an experimental study on the seismic performance of steel reinforced concrete (SRC) T-shaped columns. The lateral loads were applied along the web of the column with different loading histories, such as monotonic loading, mixed loading of variable amplitude cyclic loading and monotonic loading, constant amplitude cyclic loading and variable amplitude cyclic loading. The failure modes, load-displacement curves, characteristic loads and displacements, ductility, strength and stiffness degradations and energy dissipation capacity of the column were analyzed. The effects of loading history on the seismic performance were focused on. The test results show that the specimens behaved differently in the aspects of the failure mode subject to different loading history, although all the failure modes can be summarized as flexural failure. The hysteretic loops of specimens are plump, and minimum values of the failure drift angles and ductility coefficients are 1/24 and 4.64, respectively, which reflect good seismic performance of SRC T-shaped column. With the increasing numbers of loading cycles, the column reveals lower bearing capacity and ductility. The strength and stiffness of the column with variable amplitude cyclic loading degrades more rapidly than that with constant amplitude cyclic loading, and the total cumulative dissipated energy of the former is less.

박용 구조물용 일반압연강 용접부의 피로균열 전파거동에 미치는 $K_{II}$의 영향 (Effects of $K_{II}$ on fatigue crack propagation behavior of wedzone in generally rolled steel for marine structure)

  • 한문식;김상철
    • Journal of Welding and Joining
    • /
    • 제6권3호
    • /
    • pp.43-55
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fractue behavior of weld zone in generally rolled steel for marine structure. The bending an shear loads were applied simultaneously on the specimens to simulate real load condition for marine structure. The effect of the stress intensity factor under mode I with II loading condition on the initiation and the propagation of a crack were investigated, with particular emphaiss on mode II. When the $K_{II}$ stress intensiy factor in mode II was applied under mode I load condition, the growth behavior of a crack seems to be affected mainly by the anisotropic characteristic of materials. Especially, when the crack was located in and near the weld zone and parallel to th weld line, the propagation behaviour was turned out to be quite different from that of the base metal along the direction transverse to the weld line. In general, the propagation veiocity of the cracks in and near the weld zone was found to be slower that the velocity in base metal.

  • PDF

복합적층판의 층간파괴에 미치는 충격하중속도의 효과 (Effects of Impact Loading Rate on the Delamination Behavior of Composite Laminates)

  • 최낙삼
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1886-1895
    • /
    • 1999
  • The delamination behavior of multidirectional carbon-fiber/epoxy composite laminates under 10NA intermediate and high rates of test, up to rate of about 11.4m s has been investigated using the double cantilever beam specimens. The mode I loading under rates above l.0m/s showed considerable dynamic effects on the load-time curves and thus higher values of the average crack velocity than that expected from a simple proportional relationship with the test rate. The modified beam analysis utilizing only the opening displacement and crack length exhibited an effective means for evaluating the dynamic fracture energy $G_{IC}$. Based on the assumption of constant flexural modulus, values of $G_{IC}$ at the crack initiation and arrest were decreased with an increase of the test rate up to 5.7m/s, but the maximum $G_{IC}$ was increased at 11.4m/s.

PSC-I 거더의 균열 발생 이후의 휨거동에 관한 실험적 연구 (Am Experimental Study on the Flexural Behavior after Crack Initiation of PSC I-Girder)

  • 심종성;오홍섭;김민수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.541-544
    • /
    • 1999
  • The main objective of this study is to develope the PSC-I girder for long span bridge. This study investigates the structural behavior of Postcracking stage and efficiency of proposed PSC-I girder using 1/2 scaled prototype beam specimen. Three specimens are tested under three point static loading system. Ideally, the Load-displacement relationship is trilinear. The crack patterns and failure mode of each specimen are reported in this paper and they are compared to each other with ductility and strength.

  • PDF

KI Criteria of Surface Check under Stepwise Loadings of Drying Stresses

  • Park, Jung-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • 제27권4호
    • /
    • pp.51-56
    • /
    • 1999
  • Finite element method was utilized to analyze crack tip stress and displacement field under drying stress case as stepwise loading. Opening mode of single-edge-notched model was employed and analyzed by linear elastic fracture mechanics of plane stress case. The drying stresses were applied as stepwise loads at the boundary elements of the model with 10 steps of time serial. The stress intensity factor($K_I$) for opening mode reached to its maximum just prior to the stress reversal. The $K_I$ from the displacement fields revealed 1.7 times higher than those from stress fields. By comparing the two sets of $K_I$ from displacement and stress fields, single parameter $K_I$ showed its validity to characterize displacement fields around the crack tip front while stress field could not be characterized due to large variations between two sets of data.

  • PDF

복합재 접착 체결 구조의 접착 상태가 모드 I 균열 성장 특성에 미치는 영향에 대한 연구 (A Study on the Effect of Adhesion Condition on the Mode I Crack Growth Characteristics of Adhesively Bonded Composites Joints)

  • 노해리;전민혁;조현준;김인걸;우경식;김화수;최동수
    • Composites Research
    • /
    • 제34권5호
    • /
    • pp.323-329
    • /
    • 2021
  • 본 논문에서는 불균일한 접착 상태를 가지는 복합재 접착 체결 시편에 대하여 모드 I 하중에서의 파괴 특성을 분석하였다. 이를 위하여 Double Cantilever Beam(DCB) 시험을 수행하였으며 모드 I 파괴 인성을 도출하였다. 불균일한 접착 상태를 갖는 시편의 경우 안정한 균열 성장 구간과 불안정한 균열 성장 구간이 나타남을 확인하였다. DCB 시험에서 구한 하중-변위 선도와 시편의 파손 단면을 통해 각 구간의 파괴 특성을 관찰하였다. 시험에서 측정된 균열 길이를 기준으로 세분화된 구간과 각 구간의 모드 I 파괴 인성을 이용하여 유한요소해석을 수행하였다. DCB 시험 결과와 유한요소해석 결과를 통해 불균일한 접착 상태를 가지는 시편의 파괴 거동을 모사할 수 있음을 확인하였다.