• 제목/요약/키워드: Mode I Loading

검색결과 213건 처리시간 0.024초

파이프라인 구조 연산회로를 위한 AMBA AXI Slave 설계 (Design of AMBA AX I Slave Unit for Pipelined Arithmetic Unit)

  • 최병윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.712-713
    • /
    • 2011
  • 본 논문에서는 파이프라인 구조의 연산회로를 효율적으로 검증하기 위한 AMBA AXI Slave 하드웨어 구조를 제안하고, 설계 예로 파이프라인 곱셈기를 내장한 구조를 제시하였다. 제안한 AXI Slave 회로는 입출력 버퍼 블록 메모리, 제어용 레지스터, 파이프라인 구조 연산 회로, 파이프라인 제어회로, AXI 버스 슬레이브 인터페이스로 구성된다. 주요 동작 과정은 입력 버퍼 메모리와 외부 마스터 사이의 버스트 데이터 전송, 제어 레지스터에 동작 모드 설정, 입력 버퍼 메모리에 담긴 데이터에 대한 반복적인 파이프라인 연산회로 동작, 출력 버퍼 메모리에 담긴 출력 데이터와 외부 마스터 사이의 버스트 데이터 전송으로 나누어진다. 제안한 AXI slave 구조는 범용 인터페이스 구조를 갖고 있으므로 파이프라인 구조 구조의 연산회로를 내장한 AMBA AHB와 AXI slave에 응용이 가능하다.

  • PDF

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

탄성일인자방법을 적용한 단일방향 탄소섬유/에폭시 DCB 시편의 파괴인성 결정 ($G_IC$ determination of unidirectional graphite /epoxy DCB composites from the elastic work factor approach)

  • 이경엽;이중희
    • 대한기계학회논문집A
    • /
    • 제22권3호
    • /
    • pp.540-544
    • /
    • 1998
  • Compliance calibration method is frequently used to determine $G_IC$ from the DCB composite specimen. However, the method requires at least 4 to 5 fracture test (loading-unloading) records. In this study, $G_IC$ of unidirectional graphite/epoxy DCB composites was determined from the elastic work factor approach which uses a single fracture test record. In order to inspect the validity of the elastic work factor approach, $G_IC$ determined from the elastic work factor approach was compared to that of determined from the compliance calibration method. It was shown that $G_IC$ determined from the elastic work factor approach was comparable to that determined from the compliance calibration method. That is, the elastic work factor approach can be used to determine $G_IC$ of unidirectional graphite/epoxy DCB specimen from a single fracture record.

SiC 휘스커 강화 Al2O3 복합재료의 고인화 (Toughening of SiC Whisker Reinforced Al2O3 Composite)

  • 김연직;송준희
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.649-654
    • /
    • 2004
  • In this paper, the fracture toughness and mechanisms of failure in a random SiC-whisker/$Al_{2}O_3$ ceramic composite were investigated using in situ observations during mode I(opening) loading. $SiC_{w}/Al_{2}O_3$ composite was obtained by hot press sintering of $Al_{2}O_3$ powder and SiC whisker as the matrix and reinforcement, respectively. The whisker and powder were mixed using a turbo mill. The composite was produced at SiC whisker volume fraction of $0.3\%$. Compared with monolithic $Al_{2}O_3$, fracture toughness enhancement was observed in $SiC_{w}/Al_{2}O_3$ composite. This improved fracture toughness was attributed to SiC whisker bridging and crack deflection. $SiC_{w}/Al_{2}O_3$ composite exhibited typically brittle fracture behavior, but a fracture process zone was observed in this composite. This means that the load versus load-line displacement curve of $SiC_{w}/Al_{2}O_3$ composite from a fracture test may involve a small non-linear region near the peak load.

Computational methodology to determine the strength of reinforced concrete joint

  • Sasmal, Saptarshi;Vishnu Pradeesh, L.;Devi, A. Kanchana;Ramanjaneyulu, K.
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.61-77
    • /
    • 2016
  • Seismic performance of structures depends on the force flow mechanism inside the structure. Discontinuity regions, like beam-column joints, are often affected during earthquake event due to the complex and discontinuous load paths. The evaluation of shear strength and identification of failure mode of the joint region are helpful to (i) define the strength hierarchy of the beam-column sub-assemblage, (ii) quantify the influence of different parameters on the behaviour of beam-column joint and, (iii) develop suitable and adequate strengthening scheme for the joints, if required, to obtain the desired strength hierarchy. In view of this, it is very important to estimate the joint shear strength and identify the failure modes of the joint region as it is the most critical part in any beam-column sub-assemblage. One of the most effective models is softened strut and tie model which was developed by incorporating force equilibrium, strain compatibility and constitutive laws of cracked reinforced concrete. In this study, softened strut and tie model, which incorporates force equilibrium equations, compatibility conditions and material constitutive relation of the cracked concrete, are used to simulate the shear strength behaviour and to identify failure mechanisms of the beam-column joints. The observations of the present study will be helpful to arrive at the design strategy of the joints to ensure the desired failure mechanism and strength hierarchy to achieve sustainability of structural systems under seismic loading.

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

고탁도시 DAF 정수장의 운영 및 진단 (Operation and Diagnosis of DAF Water Treatment Plant at Highly Turbid Raw Water)

  • 권순범;안효원;강준구;손병용
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.191-200
    • /
    • 2004
  • DAF process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when the freshwater blooms occut or raw water turbidity become high. Pre-sedimentation iS prepared in case when raw water turbidity is very high by rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while it is difficult to remove in sedimentation. One of the main concerns in adoption of DAF (Dissolved Air-Flotation) process is a high raw water turbidity problem. That is, DAF is not adequate for raw water, which is more turbid than 100NTU. In order to avoid this problem, pre-sedimentation basins are prepared in DAF plant to decrease the turbidity of DAF influent. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, DAF process coupled with sedimentation is suggested that pre-sedimentation with optimum coagulation prior to DAF would be appropriate.

Effect of Silicon Infiltration on the Mechanical Properties of 2D Cross-ply Carbon-Carbon Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • 제5권3호
    • /
    • pp.108-112
    • /
    • 2004
  • Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture and loading direction. After silicon infiltrations bend and tensile strength suddenly decreases of carbon-carbon composites. This is due to the fact that, after silicon infiltration, silicon in the immediate vicinity of carbon forms the strong bond between carbon and silicon by formation silicon carbide and un-reacted silicon as free silicon. Therefore, these composites consist of three components carbon, silicon carbide and silicon. Due to mismatch between these three components secondary cracks developed and these cracks propagate from $90^{\circ}$ oriented plies to $0^{\circ}$ oriented plies by damaging the fibers (i.e., in-situ fiber damages). Hence, secondary cracks and in-situ fiber damages are responsible for degradation of mechanical properties of carbon-carbon composites after silicon infiltration which is revealed by microstructure investigation study by scanning electron microscope.

  • PDF

Influence of loading condition and reinforcement size on the concrete/reinforcement bond strength

  • Turk, Kazim;Caliskan, Sinan;Sukru Yildirim, M.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.337-346
    • /
    • 2005
  • The paper reports on a study of bond strength between reduced-water-content concrete and tensile reinforcement in spliced mode. Three different diameters (12, 16 and 22 mm) of tensile steel were spliced in the constant moment zone, where there were two bars of same size in tension. For each diameter of reinforcement, a total of nine beams ($1900{\times}270{\times}180mm$) were tested, of which three beams were with no axial force (positive bending) and the other six beams were with axial force (combined bending). The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. It was found that there was a considerable size effect in the experimental results, i.e., as the diameter of the reinforcement reduced the bond strength and the deflection recorded at the midspan increased significantly, whilst the stiffness of the beams reduced. It was also found for all reinforcement sizes that higher bond strength and stiffness were obtained for beams tested in combined bending than that of the beams tested in positive bending only.

Critical buckling coefficient for simply supported tapered steel web plates

  • Saad A. Yehia;Bassam Tayeh;Ramy I. Shahin
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.273-285
    • /
    • 2024
  • Tapered girders emerged as an economical remedy for the challenges associated with constructing long-span buildings. From an economic standpoint, these systems offer significant advantages, such as wide spans, quick assembly, and convenient access to utilities between the beam's shallow sections and the ceiling below. Elastic-local buckling is among the various failure modes that structural designers must account for during the design process. Despite decades of study, there remains a demand for efficient and comprehensive procedures to streamline product design. One of the most pressing requirements is a better understanding of the tapered web plate girder's local buckling behavior. This paper conducts a comprehensive numerical analysis to estimate the critical buckling coefficient for simply supported tapered steel web plates, considering loading conditions involving compression and bending stresses. An eigenvalue analysis was carried out to determine the natural frequencies and corresponding mode shapes of tapered web plates with varying geometric parameters. Additionally, the study highlights the relative significance of various parameters affecting the local buckling phenomenon, including the tapering ratio of the panel, normalized plate length, and ratio of minimum to maximum compressive stresses. The regression analysis and optimization techniques were performed using MATLAB software for the results of the finite element models to propose a separate formula for each load case and a unified formula covering different compression and bending cases of the elastic local buckling coefficient. The results indicate that the proposed formulas are applicable for estimating the critical buckling coefficient for simply supported tapered steel web plates.