• Title/Summary/Keyword: Mode Decomposition

Search Result 366, Processing Time 0.025 seconds

An Investigation of Large-Scale Climate Indices with the influence on Temperature and Precipitation Variation in Korea (한반도 기온 및 강수량 변동에 영향을 미치는 광역규모 기후지수들에 대한 고찰)

  • Kim, Yeon-Hee;Kim, Maeng-Ki;Lee, Woo-Seop
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.83-95
    • /
    • 2008
  • In this study we have investigated the preceding eighteen large-scale climate indices with a lead time from zero to twelve months that have an influence on the variability of temperature and precipitation in Korea in order to understand which climate indices are overall available as predictors for long-range forecasting. We also have studied the dynamic link between preceding large-scale climate indices and regional climate using singular value decomposition analysis (SVDA) and correlation analysis (CA). Based on the coupled mode between large-scale circulation and regional climate, and correlation pattern between the preceding large-scale climate indices and large-scale circulation, the level of significance on climate indices as a predictor for monthly mean temperature and precipitation was evaluated for 5 and 1% level.

Synthesis and Characterization of Fluorinated Poly(phenylmaleimide-co-pentafluorophenylmaleimide) for Optical Waveguides

  • Choi, Jongwan;Oh, Jin-Woo;Kim, Nakjoong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1077-1080
    • /
    • 2013
  • Fluorinated polymaleimides with high thermal stability and low optical absorption loss in the optical communication wavelength of $1.55{\mu}m$ were investigated for application in low-loss waveguide materials. The fluorinated polymaleimides were prepared from two monomers phenylmaleimide (H-PMI) and pentafluorophenylmaleimide (F-PMI). All synthesized copolymers had high thermal stability (decomposition temperature $(T_d)=380-430^{\circ}C$). The refractive index of the copolymers could be tuned from 1.4969 to 1.5950 in the TE mode and from 1.4993 to 1.5932 for the TM mode at 632.8 nm by copolymerizing different weight ratios of H-PMI and F-PMI. The refractive index of the copolymers decreased with increasing F-PMI content. In addition, when the amount of F-PMI was increased, optical loss and absorption loss at 632.8 nm and 1550 nm, respectively, decreased.

On the Vibration Analysis of AFM Microcantilevers Using Proper Orthogonal Modes (적합직교모드를 이용한 AFM 마이크로캔틸레버의 진동 해석에 대하여)

  • Lee, Soo-Il;Hwang, Cheol-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.756-759
    • /
    • 2005
  • Dynamic force microscopy utilizes the dynamic response of a resonating probe tip as it approaches and retracts from a sample to measure the topography and material properties of a nanostructure. We present recent ideas based on proper orthogonal decomposition (POD) and detailed experiments that yield new perspectives and insight into AFM. A dynamic cantilever model with Lennrad-Jones interaction Potential which includes attractive and repulsive van der Waals demonstrates the resonable tapping mode response in time and frequency.

  • PDF

Design and Implementation of Hi-speed/Low-power Extended QRD-RLS Equalizer using Systolic Array and CORDIC (시스톨릭 어레이 구조와 CORDIC을 사용한 고속/저전력 Extended QRD-RLS 등화기 설계 및 구현)

  • Moon, Dae-Won;Jang, Young-Beom;Cho, Yong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.1-9
    • /
    • 2010
  • In this paper, we propose a hi-speed/low-power Extended QRD-RLS(QR-Decomposition Recursive Least Squares) equalizer with systolic array structure. In the conventional systolic array structure, vector mode CORDIC on the boundary cell calculates angle of input vector, and the rotation mode CORDIC on the internal cell rotates vector. But, in the proposed structure, it is shown that implementation complexity can be reduced using the rotation direction of vector mode CORDIC and rotation mode CORDIC. Furthermore, calculation time can be reduced by 1/2 since vector mode and rotation mode CORDIC operate at the same time. Through HDL coding and chip implementation, it is shown that implementation area is reduced by 23.8% compared with one of conventional structure.

Dynamic Characteristics of Seohae Cable-stayed Bridge Based on Long-term Measurements (장기계측에 의한 서해대교 사장교의 동특성 평가)

  • Park, Jong-Chil;Park, Chan-Min;Kim, Byeong-Hwa;Lee, Il-Keun;Jo, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.115-123
    • /
    • 2006
  • This paper presents long-term dynamic characteristics of a cable-stayed bridge where installed SHM (Structural Health Monitoring) system. Modal parameters such as natural frequencies and mode shapes are identified by modal analysis using three dimensional finite element model. The developed baseline model has a good correlation with measured natural frequencies identified from field ambient vibrations. By statistical data processing between measured natural frequencies and temperatures, it is demonstrated that the natural frequency is in linearly inverse proportion to the temperature. The estimation of temperature effects against frequency variations is performed. Mode shapes are identified from the TDD (Time Domain Decomposition) technique for ambient vibration measurements. Finally, these results demonstrate that the TDD method can apply to identify modal parameters of a cable-stayed bridge.

Study on the pre-processors to improve the generalized-cross-correlation based time delay estimation under the narrow band single tone signal environments (협대역 단일 주파수 신호 환경에서 일반 상호 상관 시간 지연 추정 향상을 위한 전처리기 연구)

  • Lim, Jun Seok;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.207-215
    • /
    • 2020
  • There are several methods for the time delay estimation between signals to two receivers. Among these methods, Generalized Cross Correlation (GCC), which estimates the relative delay from the cross-correlation between the different signals at the two receivers, is a traditionally well-known method. However, when using a narrow band Continuous Wave (CW) signal, the GCC method degrades the estimation performance from relatively higher signal-to-noise ratio than when using a wideband signal. To improve this phenomenon, this paper examines four different pre-processors for GCC using narrow band single frequency signals. Simulation shows that the performance gain of the preprocessed GCC is up to 9 dB for a 100 msec CW signal as well as up to 4 dB for a 1 s CW signal.

Finite element model updating of an arch type steel laboratory bridge model using semi-rigid connection

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Kartal, Murat Emre;Adanur, Suleyman
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.541-561
    • /
    • 2010
  • This paper presents finite element analyses, experimental measurements and finite element model updating of an arch type steel laboratory bridge model using semi-rigid connections. The laboratory bridge model is a single span and fixed base structure with a length of 6.1 m and width of 1.1m. The height of the bridge column is 0.85 m and the maximum arch height is 0.95 m. Firstly, a finite element model of the bridge is created in SAP2000 program and analytical dynamic characteristics such as natural frequencies and mode shapes are determined. Then, experimental measurements using ambient vibration tests are performed and dynamic characteristics (natural frequencies, mode shapes and damping ratios) are obtained. Ambient vibration tests are performed under natural excitations such as wind and small impact effects. The Enhanced Frequency Domain Decomposition method in the frequency domain and the Stochastic Subspace Identification method in the time domain are used to extract the dynamic characteristics. Then the finite element model of the bridge is updated using linear elastic rotational springs in the supports and structural element connections to minimize the differences between analytically and experimentally estimated dynamic characteristics. At the end of the study, maximum differences in the natural frequencies are reduced on average from 47% to 2.6%. It is seen that there is a good agreement between analytical and experimental results after finite element model updating. Also, connection percentages of the all structural elements to joints are determined depending on the rotational spring stiffness.

Long Term Variability of the Sun and Climate Change (태양활동 긴 주기와 기후변화의 연관성 분석)

  • Cho, Il-Hyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.395-404
    • /
    • 2008
  • We explore the linkage between the long term variability of the Sun and earth's climate change by analysing periodicities of time series of solar proxies and global temperature anomalies. We apply the power spectral estimation method named as the periodgram to solar proxies and global temperature anomalies. We also decompose global temperature anomalies and reconstructed total solar irradiance into each local variability components by applying the EMD (Empirical Mode Decomposition) and MODWT MRA (Maximal Overlap Discrete Wavelet Multi Resolution Analysis). Powers for solar proxies at low frequencies are lower than those of high frequencies. On the other hand, powers for temperature anomalies show the other way. We fail to decompose components which having lager than 40 year variabilities from EMD, but both residuals are well decomposed respectively. We determine solar induced components from the time series of temperature anomalies and obtain 39% solar contribution on the recent global warming. We discuss the climate system can be approximated with the second order differential equation since the climate sensitivity can only determine the output amplitude of the signal.

Assessment of environmental effects in scour monitoring of a cable-stayed bridge simply based on pier vibration measurements

  • Wu, Wen-Hwa;Chen, Chien-Chou;Shi, Wei-Sheng;Huang, Chun-Ming
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.231-246
    • /
    • 2017
  • A recent work by the authors has demonstrated the feasibility of scour evaluation for Kao-Ping-Hsi Cable-Stayed Bridge simply based on ambient vibration measurements. To further attain the goal of scour monitoring, a key challenge comes from the interference of several environmental factors that may also significantly alter the pier frequencies without the change of scour depth. Consequently, this study attempts to investigate the variation in certain modal frequencies of this bridge induced by several environmental factors. Four sets of pier vibration measurements were taken either during the season of plum rains, under regular summer days without rain, or in a period of typhoon. These signals are analyzed with the stochastic subspace identification and empirical mode decomposition techniques. The variations of the identified modal frequencies are then compared with those of the corresponding traffic load, air temperature, and water level. Comparison of the analyzed results elucidates that both the traffic load and the environmental temperature are negatively correlated with the bridge frequencies. However, the traffic load is clearly a more dominant factor to alternate the identified bridge deck frequency than the environmental temperature. The pier modes are also influenced by the passing traffic on the bridge deck, even though with a weaker correlation. In addition, the variation of air temperature follows a similar tendency as that of the passing traffic, but its effect on changing the bridge frequencies is obviously not as significant. As for the effect from the alternation of water level, it is observed that the frequency baselines of the pier modes may positively correlate with the water level during the seasons of plum rains and typhoon.

Full Scale Measurement Data Analysis of Large Container Carrier with Hydroelastic Response, Part I - Identification of Modal Parameters (대형 컨테이너 선박의 유탄성 실선 계측 데이터 분석 Part I - 모달 파라미터 추정)

  • Kim, Byounghoon;Choi, Byungki;Park, Junseok;Park, Sunggun;Ki, Hyeokgeun;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.37-44
    • /
    • 2018
  • To understand the dynamic characteristics of the vessel with hydroelastic response, it is very important to estimate the dynamic modal parameters such as mode shapes, natural frequency, and damping ratio. These dynamic modal parameters of full scale ship are a priori unknowns, hence to be estimated directly based upon the full scale measurement data. In this paper, dynamic modal parameters were extracted by signal processing of acceleration and strain data measured from a large container ship whose loading capacity is 9400TEU. The mode shapes of the vibrating hull were identified using the proper orthogonal decomposition and the vibration response of hull was decomposed into its modal magnitudes. Natural frequencies of specific modes were derived via Fourier transform of these modal magnitude. Also, the free decay signal of the vibrating hull was obtained through the random decrement technique and the damping ratio was estimated with accuracy.