• 제목/요약/키워드: Modal assurance criterion

검색결과 47건 처리시간 0.019초

Optimal sensor placement for structural health monitoring based on deep reinforcement learning

  • Xianghao Meng;Haoyu Zhang;Kailiang Jia;Hui Li;Yong Huang
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.247-257
    • /
    • 2023
  • In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.

Improved block-wise MET for estimating vibration fields from the sensor

  • Jung, Byung Kyoo;Jeong, Weui Bong;Cho, Jinrae
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.279-285
    • /
    • 2017
  • Modal expansion technique (MET) is a method to estimate the vibration fields of flexible structures by using eigenmodes of the structure and the signals of sensors. It is the useful method to estimate the vibration fields but has the truncation error since it only uses the limit number of the eigenmodes in the frequency of interest. Even though block-wise MET performed frequency block by block with different valid eigenmodes was developed, it still has the truncation error due to the absence of other eigenmodes. Thus, this paper suggested an improved block-wise modal expansion technique. The technique recovers the truncation errors in one frequency block by utilizing other eigenmodes existed in the other frequency blocks. It was applied for estimating the vibration fields of a cylindrical shell. The estimated results were compared to the vibration fields of the forced vibration analysis by using two indices: the root mean square error and parallelism between two vectors. These indices showed that the estimated vibration fields of the improved block-wise MET more accurately than those of the established METs. Especially, this method was outstanding for frequencies near the natural frequency of the highest eigenmode of each block. In other words, the suggested technique can estimate vibration fields more accurately by recovering the truncation errors of the established METs.

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park;Jongwon Jung;Seunghee Park;Hyungchul Yoon
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.45-56
    • /
    • 2023
  • Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

유한요소법과 경계요소법을 이용한 수중에서의 탄성구조물의 진동모드해석 및 모델링 기법 (Modelling Technique and Model Analysis of Submerged Structures Using Finite Element Method and Boundary Element Method)

  • 김관주;오상륜
    • 소음진동
    • /
    • 제10권2호
    • /
    • pp.319-324
    • /
    • 2000
  • This paper shows hot to model the submerged elastic structures and adequate analysis tools for modal behavior when using finite element and boundary element method. Four different cases are reviewed depending on the location of the water and air. First case is that structures are filled with air and water is located outside. Second case is opposite to case one. These cases are solved by direct approach using collocation procedure. Third case is that water is located both sides of structures. Last case is that air is located both sides. These cases are solved by indirect approach using variational procedure. As analysis tools harmonic frequency sweep analysis and eigenvalue iteration method are selected to obtain the natural frequencies of vibrating submerged structures depending on the cases. Results are compared with closed form solutions of submerged spherical shell.

  • PDF

감쇠를 포함한 유한요소모형의 개선 (Updating of Finite Element Models Including Damping)

  • 박오철;이건명
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.708-713
    • /
    • 2007
  • Finite element model updating has been performed using an optimization technique in the paper. The objective function consists of natural frequencies, modal assurance criterion values, and bandwidths of modes, which are obtained from finite element analysis and experiment. Young's modulus and damping coefficient of the material are selected as design variables whose values are modified to make the objective function as small as possible. To consider the loading effect of an accelerometer, its mass and moment of inertia are added to design variables. This model updating method has been applied to a cantilever beam, and experimental data are measured by modal test.

  • PDF

$6{\times}6$ 지지격자로 지지된 핵연료봉 튜브의 진동특성 (Dynamic Characteristics of Nuclear Fuel Tube with $6{\times}6$ Spacer Grids)

  • 문효익;이희남;장영기;이승태;김재익;박남규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.361-365
    • /
    • 2007
  • 우라늄을 내장한 연료봉은 핵분열이 일어나는 우라늄 펠렛(pellet)을 1차적으로 차폐하는 중요한 구조물이다. 연료봉은 원자로 내에서 유체유발진동에 의해 손상될 수 있으며, 본 연구에서는 유동유발진동 특성을 예측하기 위해 핵연료봉의 동특성 규명을 위한 모드해석을 수행하였다. 핵연료봉의 진동특성을 규명하기 위해 제작한 시험장치를 이용하여 피복관(clad tube)의 진동특성실험과 유한 요소 해석을 수행하였다. 모드시험(Modal Testing)은 현재 상용 핵연료봉(튜브)을 대상으로 수행되었으며, 유한 요소 해석 모델을 개발하여 해석 결과와 시험 결과를 비교 분석하였다.

  • PDF

Structural damage detection based on MAC flexibility and frequency using moth-flame algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Structural Engineering and Mechanics
    • /
    • 제70권6호
    • /
    • pp.649-659
    • /
    • 2019
  • Vibration-based structural damage detection through optimization algorithms and minimization of objective function has recently become an interesting research topic. Application of various objective functions as well as optimization algorithms may affect damage diagnosis quality. This paper proposes a new damage identification method using Moth-Flame Optimization (MFO). MFO is a nature-inspired algorithm based on moth's ability to navigate in dark. Objective function consists of a term with modal assurance criterion flexibility and natural frequency. To show the performance of the said method, two numerical examples including truss and shear frame have been studied. Furthermore, Los Alamos National Laboratory test structure was used for validation purposes. Finite element model for both experimental and numerical examples was created by MATLAB software to extract modal properties of the structure. Mode shapes and natural frequencies were contaminated with noise in above mentioned numerical examples. In the meantime, one of the classical optimization algorithms called particle swarm optimization was compared with MFO. In short, results obtained from numerical and experimental examples showed that the presented method is efficient in damage identification.

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

실험 모드해석을 이용한 균열 적층복합판의 손상평가 (Damage Evaluation of Cracked Laminated Composite Plates Using Experimental Modal Analysis)

  • 김주우
    • 한국강구조학회 논문집
    • /
    • 제24권4호
    • /
    • pp.399-410
    • /
    • 2012
  • 본 연구에서는 실험적 모드해석 기법을 이용하여 캔틸레버 및 양단고정 직사각형 적층복합판의 동적 테스트가 수행되었다. 균열 성장으로 인한 손상평가를 위하여 적층복합판에 인위적인 단계별 손상(균열)을 가하였으며, 충격해머 모드실험에 의해 얻어진 주파수응답함수(FRF), MAC(Modal Assurance Criterion) 값 및 모드매개변수(진동수, 모드형상, 감쇠비)의 변화를 분석하였다. 각 단계별 손상에 대한 적층복합판의 실험적 모드매개변수를 검증하기 위하여 유한요소해석으로부터 구한 고유진동수와 모드형상을 비교하였다. 손상은 벤치마크로서의 유한요소모델을 보정하는 과정으로부터 얻게 되는 적층복합판의 기하학적 특성 및 구조적 거동의 변화를 통하여 평가될 수 있음을 보여주었다.

원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구 (A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants)

  • 이찬우;김유진;정형조
    • 한국전산구조공학회논문집
    • /
    • 제36권3호
    • /
    • pp.155-163
    • /
    • 2023
  • 원전 구조물의 실시간 모니터링 기술이 요구되고 있지만, 현재 운영 중인 지진 감시계통으로는 동특성 추출 등 시스템 식별이 제한된다. 전역적인 거동 데이터 및 동특성 추출을 위해서는 다수의 센서를 최적 배치하여야 한다. 최적 센서배치 연구는 많이 진행되어 왔지만 주로 토목, 기계 구조물이 대상이었으며 원전 구조물 대상으로 수행된 연구는 없었다. 원전 구조물은 미미한 신호대잡음비에도 강건한 신호를 획득하여야 하며, 모드 기여도가 저차 모드에 집중되어 있어 모드별 잡음 영향을 고려해야 하는 등 구조물 특성을 고려해야 한다. 이에 본 연구에서는 잡음에 대한 강건도와 모드별 영향을 평가할 수 있는 최적 센서배치 방법론을 제시하였다. 활용한 지표로서 auto MAC(Modal Assurance Criterion), cross MAC, 노드별 모드형상 분포를 분석하였으며, 잡음에 대한 강건도 평가의 적합성을 수치해석으로 검증하였다.