• Title/Summary/Keyword: Modal Transformation

Search Result 66, Processing Time 0.025 seconds

Wind-tunnel tests on high-rise buildings: wind modes and structural response

  • Sepe, Vincenzo;Vasta, Marcello
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.37-56
    • /
    • 2014
  • The evaluation of pressure fields acting on slender structures under wind loads is currently performed in experimental aerodynamic tests. For wind-sensitive structures, in fact, the knowledge of global and local wind actions is crucial for design purpose. This paper considers a particular slender structure under wind excitation, representative of most common high-rise buildings, whose experimental wind field on in-scale model was measured in the CRIACIV boundary-layer wind tunnel (University of Florence) for several angles of attack of the wind. It is shown that an efficient reduced model to represent structural response can be obtained by coupling the classical structural modal projection with the so called blowing modes projection, obtained by decomposing the covariance or power spectral density (PSD) wind tensors. In particular, the elaboration of experimental data shows that the first few blowing modes can effectively represent the wind-field when eigenvectors of the PSD tensor are used, while a significantly larger number of blowing modes is required when the covariance wind tensor is used to decompose the wind field.

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

An Improved Method for Fault Location based on Traveling Wave and Wavelet Transform in Overhead Transmission Lines

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.51-60
    • /
    • 2012
  • An improved method for detecting fault distance in overhead transmission lines is described in this paper. Based on single-ended measurement, propagation theory of traveling waves together with the wavelet transform technique is used. In estimating fault location, a simple, but fundamental method using the time difference between the two consecutive peaks of transient signals is considered; however, a new method to enhance measurement sensitivity and its accuracy is sought. The algorithm is developed based on the lattice diagram for traveling waves. Representing both the ground mode and alpha mode of traveling waves, in a lattice diagram, several relationships to enhance recognition rate or estimation accuracy for fault location can be found. For various cases with fault types, fault locations, and fault inception angles, fault resistances are examined using the proposed algorithm on a typical transmission line configuration. As a result, it is shown that the proposed system can be used effectively to detect fault distance.

Transient Power Flow Analysis of Beam and Plate (과도 입력파워에 대한 보와 평판의 파워흐름해석)

  • Hwang, Dae-Woong;Seo, Seong-Hoon;Kwon, Hyun-Wung;Hong, Suk-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.624-631
    • /
    • 2007
  • PFA (power flow analysis) has been recognized as a useful method in vibration analysis of medium-to-high frequency ranges. Until now, PFA method has been developed for steady-state vibration problems. In this paper, PFA method has been expanded to transient problem. New energy governing equations are derived considering time dependent terms in beam and plate. Analytic solutions of those equations are found in simple beam and plate, and are verified by comparing with modal solutions.

The influence of different support movements and heights of piers on the dynamic behavior of bridges -Part I: Earthquake acting transversely to the deck

  • Michaltsos, George T.;Raftoyiannis, Ioannis G.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.431-454
    • /
    • 2009
  • This paper presents a simple model for studying the dynamic response of multi-span bridges resting on piers with different heights and subjected to earthquake forces acting transversely to the bridge, but varying spatially along its length. The analysis is carried out using the modal superposition technique, while the solution of the resulting integral-differential equations is obtained via the Laplace transformation. It has been found that the piers' height and the quality of the foundation soil can affect significantly the dynamic behavior of such bridges. Typical examples showing the effectiveness of the method are presented with useful results listed.

Damage identification in a railroad structures using operational deflection shape (가동변형형상을 이용한 철도구조물의 손상인식)

  • Choi, Sang-Hyun
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.56-64
    • /
    • 2008
  • To maintain effectively the functionality of major railroad facilities such as bridges, identifying and evaluating damage in a structure and taking appropriate action via continuous structural health monitoring are very important. However, most damage identification methods for structural health monitoring developed to date utilize modal domain responses which inevitably contain errors in transforming the domain of responses. In this paper, a damage identification method using time-domain operational deflection shapes is proposed. Since the proposed method utilizes time-domain responses, the error in the process of transformation to response domain can be avoided, and the accuracy of structural health evaluation can be improved. The feasibility of the proposed method is verified via a numerical example of a simple bridge structure.

  • PDF

Fourier Series Expansion Method for Free Vibration Analysis of a Fully Liquid-Filled Circular Cylindrical Shell (Fourier 급수전개를 이용한 유체로 가득 채워진 원통형 셸의 고유진동 해석)

  • 정경훈;이성철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.137-146
    • /
    • 1994
  • An analytical method for linear free vibration of fully liquid-filled circular cylindrical shell with various boundary conditions is developed by the Fourier series expansion based on the Stokes' transformation. A set of modal displacement functions and their derivatives of a circular cylindrical shell is substituted into the Sanders' shell equations in order to explicitily represent the Fourier coefficients as functions of the end point displacements, forces, and moments. For the vibration relevant to the liquid motion, the velocity potential of liquid is assumed as a sum of linear combination of suitable harmonic functions in the axial directions. The unknown parameter of the velocity potential is selected to satisfy the boundary condition along the wetted shell surface. An explicit expression of the natural frequency equation can be obtained for any kind of classical boundary conditions. The natural frequencies of the liquid-filled cylindrical shells with the clamped-free, the clamped-clamped, and the simply supported-simply supported boundary conditions examined in the previous works, are obtained by the analytical method. The results are compared with the previous works, and excellent agreement is found for the natural frequencies of the shells.

  • PDF

A Study of Real Time Mode Selecting Stochastic Controller (실시간 모드 선택 확률제어기에 관한 연구)

  • Kim, Yong-Kwan;Lee, Jong-Bok;Yeo, Woon-ju;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1054-1057
    • /
    • 2003
  • A Real Time Mode Selecting Stochastic Controller (RTMSSC) is developed as a new control strategy for a vibrating system under irregular disturbance. Displacement information and frequency characteristics obtained from me::id analysis of the system are used to design a Mode Selecting Controller. This Paper explains design technique of RTNSSC by applying it to the suppression of a flexible beam experiencing random vibration. The RTMSSC is designed by stochastic control from the modal information. The frequency information of the flexible system is utilized from the Mode Selecting Unit (MSU) based on a Fast-Fourier Transformation algorithm. The performance of the proposed technique, RTMSSC, is compared with that of Real Time Stochastic Controller developed recently, which show quite promising results.

  • PDF

Influence of wind disturbance on smart stiffness identification of building structure using limited micro-tremor observation

  • Koyama, Ryuji;Fujita, Kohei;Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.293-315
    • /
    • 2015
  • While most of researches on system identification of building structures are aimed at finding modal parameters first and identifying the corresponding physical parameters by using the transformation in terms of transfer functions and cross spectra, etc., direct physical parameter system identification methods have been proposed recently. Due to the problem of signal/noise (SN) ratios, the previous methods are restricted mostly to earthquake records or forced vibration data. In this paper, a theoretical investigation is performed on the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors. It is concluded that the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors is restricted in case of using time-series data for low-rise buildings and does not cause serious problems.

Output only system identification using complex wavelet modified second order blind identification method - A time-frequency domain approach

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.369-378
    • /
    • 2021
  • This paper reviewed a few output-only system identification algorithms and identified the shortcomings of those popular blind source separation methods. To address the issues such as less sensors than the targeted modal modes (under-determinate problem), repeated natural frequencies as well as systems with complex mode shapes, this paper proposed a complex wavelet modified second order blind identification method (CWMSOBI) by transforming the time domain problem into time-frequency domain. The wavelet coefficients with different dominant frequencies can be used to address the under-determinate problem, while complex mode shapes are addressed by introducing the complex wavelet transformation. Numerical simulations with both high and low signal-to-noise ratios validate that CWMSOBI can overcome the above-mentioned issues while obtaining more accurate identified results than other blind identification methods.