• Title/Summary/Keyword: Modal Sensitivity Method

Search Result 116, Processing Time 0.033 seconds

Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records (상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정)

  • Kim Jae Min;Feng. M. Q.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

Multi-dimensional sensor placement optimization for Canton Tower focusing on application demands

  • Yi, Ting-Hua;Li, Hong-Nan;Wang, Xiang
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.235-250
    • /
    • 2013
  • Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale structures. According to the mathematical background and implicit assumptions made in the triaxial effective independence (EfI) method, this paper presents a novel multi-dimensional OSP method for the Canton Tower focusing on application demands. In contrast to existing methods, the presented method renders the corresponding target mode shape partitions as linearly independent as possible and, at the same time, maintains the stability of the modal matrix in the iteration process. The modal assurance criterion (MAC), determinant of the Fisher Information Matrix (FIM) and condition number of the FIM have been taken as the optimal criteria, respectively, to demonstrate the feasibility and effectiveness of the proposed method. Numerical investigations suggest that the proposed method outperforms the original EfI method in all instances as expected, which is looked forward to be even more pronounced should it be used for other multi-dimensional optimization problems.

Damage detection using finite element model updating with an improved optimization algorithm

  • Xu, Yalan;Qian, Yu;Song, Gangbing;Guo, Kongming
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.191-208
    • /
    • 2015
  • The sensitivity-based finite element model updating method has received increasing attention in damage detection of structures based on measured modal parameters. Finding an optimization technique with high efficiency and fast convergence is one of the key issues for model updating-based damage detection. A new simple and computationally efficient optimization algorithm is proposed and applied to damage detection by using finite element model updating. The proposed method combines the Gauss-Newton method with region truncation of each iterative step, in which not only the constraints are introduced instead of penalty functions, but also the searching steps are restricted in a controlled region. The developed algorithm is illustrated by a numerically simulated 25-bar truss structure, and the results have been compared and verified with those obtained from the trust region method. In order to investigate the reliability of the proposed method in damage detection of structures, the influence of the uncertainties coming from measured modal parameters on the statistical characteristics of detection result is investigated by Monte-Carlo simulation, and the probability of damage detection is estimated using the probabilistic method.

Integrated Structural and PD-Control Optimization of Flexible Rotor Supported by Active Magnetic Bearings

  • Jeon, Han-Wook;Lee, Chong-Won;Watanabe, Toru
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.736-742
    • /
    • 2008
  • This paper proposes new searching algorithm for the optimal PD gains of flexible rotor supported by active magnetic bearings. Under the assumption of linearized bearing parameters with respect to PD gains, the performance index in quadratic form is defined and steepest descent method is adopted for determining local minimum. Moreover, the eigenpair sensitivity concept is utilized to evaluate the sensitivity of performance index. To evaluate the effectiveness of suggested algorithm, the finite element model is constructed and its reduced model is retained in modal domain. Given starting gains, the optimal gains are successfully found and the control performance is demonstrated by simulation to show the efficiency of the proposed method.

  • PDF

Coupled Vibration Analysis and Sensitivity of HDD using the Finite Element Method (유한요소법을 이용한 하드디스크의 회전 연성 진동 해석 및 설계민감도 연구)

  • Wang, Se-Myung;Yi, Ki-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.472-478
    • /
    • 2000
  • The vibration of the hard disk drive (HDD) systems, which comprises flexible disks, flexible shafts, bearings, and base structures, are analyzed by a finite element method (FEM) to cope with complicated coupling effects between them. The natural frequencies and mode shapes of the uncoupled, axial and bending coupled vibrations are calculated. Modal testing of the HDD systems is performed to validate the finite element analysis (FEA) results. Good agreement was obtained between the computed and experimental results. Sizing design sensitivity analysis (DSA) of the system was performed with the thickness of base structure and bearing stiffness as design variables. The DSA results tell how can I increase or decrease eigenvalue of the system effectively.

  • PDF

A novel multistage approach for structural model updating based on sensitivity ranking

  • Jiang, Yufeng;Li, Yingchao;Wang, Shuqing;Xu, Mingqiang
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.657-668
    • /
    • 2020
  • A novel multistage approach is developed for structural model updating based on sensitivity ranking of the selected updating parameters. Modal energy-based sensitivities are formulated, and maximum-normalized indices are designed for sensitivity ranking. Based on the ranking strategy, a multistage approach is proposed, where these parameters to be corrected with similar sensitivity levels are updated simultaneously at the same stage, and the complete procedure continues sequentially at several stages, from large to small, according to the predefined levels of the updating parameters. At every single stage, a previously developed cross model cross mode (CMCM) method is used for structural model updating. The effectiveness and robustness of the multistage approach are investigated by implementing it on an offshore structure, and the performances are compared with non-multistage approach using numerical and experimental vibration information. These results demonstrate that the multistage approach is more effective for structural model updating of offshore platform structures even with limited information and measured noise. These findings serve as a preliminary strategy for structural model updating of an offshore platform in service.

Damage Estimation of Structures Incorporating Structural Identification (동특성 추정을 이용한 구조물의 손상도 추정)

  • Yun, Chung-Bang;Lee, Hyeong-Jin;Kim, Doo-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.136-143
    • /
    • 1995
  • The problem of the structural identification becomes important, particularly with relation to the rapid increase of the number of the damaged or deteriorated structures, such as highway bridges, buildings, and industrial facilities. This paper summarizes the recent studies related to those problems by the present authors. The system identfication methods are generally classified as the time domain and the frequency domain methods. As time doamin methods, the sequential algorithms such as the extended Kalman filter and the sequential prediction error method are studied. Several techniques for improving the convergences are incorporated. As frequency domain methods, a new frequency response function estimator is introduced. For damage estimation of existing structures, the modal perturbation and the sensitivity matrix methods are studied. From the example analysis, it has been found that the combined utilization of the measurement data for the static response and the dynamic (modal) properties are very effictive for the damage estimation.

  • PDF

A new method to identify bridge bearing damage based on Radial Basis Function Neural Network

  • Chen, Zhaowei;Fang, Hui;Ke, Xinmeng;Zeng, Yiming
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.841-859
    • /
    • 2016
  • Bridge bearings are important connection elements between bridge superstructures and substructures, whose health states directly affect the performance of the bridges. This paper systematacially presents a new method to identify the bridge bearing damage based on the neural network theory. Firstly, based on the analysis of different damage types, a description of the bearing damage is introduced, and a uniform description for all the damage types is given. Then, the feasibility and sensitivity of identifying the bearing damage with bridge vibration modes are investigated. After that, a Radial Basis Function Neural Network (RBFNN) is built, whose input and output are the beam modal information and the damage information, respectively. Finally, trained by plenty of data samples formed by the numerical method, the network is employed to identify the bearing damage. Results show that the bridge bearing damage can be clearly reflected by the modal information of the bridge beam, which validates the effectiveness of the proposed method.

System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network

  • Kim, Jeong-Tae;Ho, Duc-Duy;Nguyen, Khac-Duy;Hong, Dong-Soo;Shin, Sung Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.533-553
    • /
    • 2013
  • In this paper, system identification of a cable-stayed bridge in Korea, the Hwamyung Bridge, is performed using vibration responses measured by a wireless sensor system. First, an acceleration based-wireless sensor system is employed for the structural health monitoring of the bridge, and wireless sensor nodes are deployed on a deck, a pylon and several selected cables. Second, modal parameters of the bridge are obtained both from measured vibration responses and finite element (FE) analysis. Frequency domain decomposition and stochastic subspace identification methods are used to obtain the modal parameters from the measured vibration responses. The FE model of the bridge is established using commercial FE software package. Third, structural properties of the bridge are updated using a modal sensitivity-based method. The updating work improves the accuracy of the FE model so that structural behaviors of the bridge can be represented better using the updated FE model. Finally, cable forces of the selected cables are also identified and compared with both design and lift-off test values.

Structural damage alarming and localization of cable-supported bridges using multi-novelty indices: a feasibility study

  • Ni, Yi-Qing;Wang, Junfang;Chan, Tommy H.T.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.337-362
    • /
    • 2015
  • This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.