• Title/Summary/Keyword: Mobility Simulation

Search Result 814, Processing Time 0.029 seconds

Hierarchical Mesh-based Multicast Routing Protocol for Ad-Hoc Networks (에드 혹 네트워크를 위한 계층적인 메쉬 기반 멀티캐스트 라우팅 프로토콜)

  • Kim, Ye-Kyung;Lee, Mee-Jeong
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.586-601
    • /
    • 2001
  • We propose a mesh based multicast routing protocol referred to as HMMRP for ad-hoc networks. In HMMRP, a limited number of sources are selected as core sources, and the rest of the sources of a multicast group are connected to one of those core sources. The sources and the receivers of a multicast group are also connected through per source trees. In HMMRP, the data delivery mesh of a multicast group are composed of the nodes on these paths, and are reconfigured at regular intervals. Furthermore, each mesh member that lies on the paths between the sources and the core sources as well as be-tween the core sources and the receivers keeps checking if there is a symptom of mesh separation around itself. When a mesh member finds such symptom, it tries to patch itself to the mesh with a local flooding. As a result, the part of the data delivery mesh on those paths are kept connected with a lot higher probability than the rest of the data delivery mesh. That is, for a certain source receiver pair, it is very likely that at least there exists a data delivery path that route from the source to a core source and then to the receiver. Therefore, HMMRP may provide very high data delivery ratio without frequent entire data delivery mesh reconfiguration even when the nodal mobility is high. Simulation results show that HMMRP shows relatively little performance degradation with respect to mobility. Furthermore, the performance degradation with respect to mobility is even smaller when the size of the multicast group becomes larger.

  • PDF

An Energy Consumption Model using Two-Tier Clustering in Mobile Sensor Networks (모바일 센서 네트워크에서 2계층 클러스터링을 이용한 에너지 소비 모델)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.9-16
    • /
    • 2016
  • Wireless sensor networks (WSN) are composed of sensor nodes and a base station. The sensor nodes deploy a non-accessible area, receive critical information, and transmit it to the base station. The information received is applied to real-time monitoring, distribution, medical service, etc.. Recently, the WSN was extended to mobile wireless sensor networks (MWSN). The MWSN has been applied to wild animal tracking, marine ecology, etc.. The important issues are mobility and energy consumption in MWSN. Because of the limited energy of the sensor nodes, the energy consumption for data transmission affects the lifetime of the network. Therefore, efficient data transmission from the sensor nodes to the base station is necessary for sensing data. This paper, proposes an energy consumption model using two-tier clustering in mobile sensor networks (TTCM). This method divides the entire network into two layers. The mobility problem was considered, whole energy consumption was decreased and clustering methods of recent researches were analyzed for the proposed energy consumption model. Through analysis and simulation, the proposed TTCM was found to be better than the previous clustering method in mobile sensor networks at point of the network energy efficiency.

Development of Autonomous Vehicle Learning Data Generation System (자율주행 차량의 학습 데이터 자동 생성 시스템 개발)

  • Yoon, Seungje;Jung, Jiwon;Hong, June;Lim, Kyungil;Kim, Jaehwan;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.162-177
    • /
    • 2020
  • The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.

Energy and Delay-Efficient Multipath Routing Protocol for Supporting Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 다중 경로 라우팅 프로토콜)

  • Lee, Hyun Kyu;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.447-454
    • /
    • 2016
  • The research on multipath routing has been studied to solve the problem of frequent path breakages due to node and link failures and to enhance data delivery reliability in wireless sensor networks. In the multipath routing, mobile sinks such as soldiers in battle fields and rescuers in disaster areas bring about new challenge for handling their mobility. The sink mobility requests new multipath construction from sources to mobile sinks according to their movement path. Since mobile sinks have continuous mobility, the existing multipath can be exploited to efficiently reconstruct to new positions of mobile sinks. However, the previous protocols do not address this issue. Thus, we proposed an efficient multipath reconstruction protocol called LGMR for mobile sinks in wireless sensor networks. The LGMR address three multipath reconstruction methods based on movement types of mobile sinks: a single hop movement-based local multipath reconstruction, a multiple hop movement-based local multipath reconstruction, and a multiple hop movement-based global multipath reconstruction. Simulation results showed that the LGMR has better performance than the previous protocol in terms of energy consumption and data delivery delay.

Investigation of Effects of Lightning and Icing on an e-VTOL UAM Aircraft and a Proposal for Certification Guidance (e-VTOL UAM 항공기의 낙뢰 및 결빙 영향성 분석 및 인증기술에 관한 연구)

  • Kim, Yun-Gon;Jo, Hyeonseung;Jo, Jae-Hyeon;Park, Se-Woong;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.45-56
    • /
    • 2021
  • Demand for UAM (Urban Air Mobility) aircraft is rapidly increasing in countries around the world due to the problem of traffic congestion in urban areas. Through research and development, various e-VTOL aircraft concepts are being prepared for commercialization, for which airworthiness certification is required, since it is a manned transportation mode for people to board. Factors that pose a fatal threat to the safe operation of UAM aircraft include lightning strikes that can cause damage to structures and disturb the navigation system, as well as icing that impairs flight stability. Since the current UAM aircraft-related lightning and icing certification technology development is insufficient, there is need to develop appropriate airworthiness certification guidelines. In this study, after analyzing the laws and regulations related to aircraft by the FAA and the EASA, we tried to incorporate the lightning and icing certification guidelines for the UAM aircraft. We also analyzed the effects of lightning and icing on UAM aircraft using computational simulation, and presented the basis for establishing practical guidelines for the certification of UAM aircraft to be adopted in the future.

Computational Simulation of Coaxial eVTOL Aircraft in Ground Effect (동축 반전 전기동력 수직이착륙기의 지면 효과에 대한 전산해석)

  • Yang, Jin-Yong;Lee, Hyeok-Jin;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.599-608
    • /
    • 2022
  • Urban air mobility (UAM) equipped with rotor system is subject to ground effect at vertiport during takeoff and landing. The aerodynamic performance of the aircraft in ground effect should be analyzed for the safe operation. In this study, The ground effects on the aerodynamic performance and wake structure of the quadcopter electric vertical takeoff and landing (eVTOL) configuration equipped with coaxial counter-rotating propellers were investigated by using the lattice Boltzmann method (LBM). The influence of the ground effect was observed differently in the upper and lower propellers of the coaxial counter-rotating propeller system. There was no significant change in the aerodynamic performance of the upper propeller even if the propeller height above the ground was changed, whereas the averaged thrust and torque of the lower propeller increased significantly as propeller height decreased. In addition, the amplitude of the thrust fluctuation tended to increase as the propeller height decreased. The propeller wake was not sufficiently propagated downstream and was diffused along the ground due to the outwash flow developed by the ground effect. The impingement of the rotor wakes on the ground and a fountain vortex structure were observed.

Drone-mounted fruit recognition algorithm and harvesting mechanism for automatic fruit harvesting (자동 과일 수확을 위한 드론 탑재형 과일 인식 알고리즘 및 수확 메커니즘)

  • Joo, Kiyoung;Hwang, Bohyun;Lee, Sangmin;Kim, Byungkyu;Baek, Joong-Hwan
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2022
  • The role of drones has been expanded to various fields such as agriculture, construction, and logistics. In particular, agriculture drones are emerging as an effective alternative to solve the problem of labor shortage and reduce the input cost. In this study therefore, we proposed the fruit recognition algorithm and harvesting mechanism for fruit harvesting drone system that can safely harvest fruits at high positions. In the fruit recognition algorithm, we employ "You-Only-Look-Once" which is a deep learning-based object detection algorithm and verify its feasibility by establishing a virtual simulation environment. In addition, we propose the fruit harvesting mechanism which can be operated by a single driving motor. The rotational motion of the motor is converted into a linear motion by the scotch yoke, and the opened gripper moves forward, grips a fruit and rotates it for harvesting. The feasibility of the proposed mechanism is verified by performing Multi-body dynamics analysis.

Analysis of Traffic Flow Based on Autonomous Vehicles' Perception of Traffic Safety Signs in Urban Roads (도시부 도로 내 자율주행차량의 교통안전표지 정보 인지 시점에 따른 교통류 분석)

  • Jongho Kim;Hyeokjun Jang;Eum Han;Eunjeong Ko
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.148-162
    • /
    • 2023
  • The objective of this study is to derive the appropriate perception location for changes in driving behavior of autonomous vehicles in urban road environments based on traffic safety signs. For this purpose, 32 types of signs that induce changes in driving behavior were selected from currently used traffic safety signs and classified as three types according to changes in driving behavior. Based on this, three scenarios were designed: stop, speed change, and lane change scenarios. These were used to confirm the impact on traffic flow. As a result of the analysis, it was found that each scenario needs to receive information on traffic safety signs in advance to ensure changes in traffic flow and safety. Consequently, the appropriate perception location can be used as a basis for establishing standards for delivering message sets to autonomous vehicles or revising traffic safety signs for them. In addition, this study is expected to contribute to the establishment of safe and efficient driving strategies on urban roads as autonomous vehicles are introduced in the future.

Implementation Plan of MaaS according to Various Public Transport Links (MaaS의 다양한 공공교통수단 연계에 따른 구현 방안)

  • Seo, Ji-Yeong;Lee, Seon-Ha;Cheon, Choon-Keun;Lee, Eun-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.73-86
    • /
    • 2018
  • The increase in the number of private automobiles has incurred various traffic problems. Globally, studies on MaaS(Mobility as a Service) has already been initiated to mobilize the use of public transportation in reducing private passenger cars in roads. This study aims to analyze the passenger's optimal route considering the transfer between different transportation modes through simulation, and analyze the effect of available route through the connected transportation modes. Sejong Special Self-Governing City was chosen as the study area due to its extensive transportation network. As a result of the analysis, the predominant obtainable route is derived either from using public transportation (i.e. bus and subway) only or by bicycle. However, it is also possible to use the car sharing and public bicycle to reach their final destination efficiently when paths that can be traversed were more scrutinized. When various transportation information and location-based services are introduced in smart phone applications, they can provide very useful information to passengers, and also promote social problems such as traffic congestion and environmental issues in the future.

Analysis on the Performance Degradation of MIMO-OFDM Receiver and Hybrid Interference Cancellation with Low Complexity for the Performance Improvement Under High-Mobility Condition (MIMO-OFDM 수신기의 성능 열화 분석 및 고속 이동환경에서의 성능 향상을 위한 저복잡도 HIC 간섭제거 기법)

  • Kang, Seung-Won;Kim, Kyoo-Hyun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.95-112
    • /
    • 2007
  • Spatial Multiplexing techniques, which is a kind of Multiple antenna techniques, provide high data transmission rate by transmitting independent data at different transmit antenna with the same spectral resource. OFDM (Orthogonal Frequency Division Multiplexing) is applied to MIMO (Multiple-Input Multiple-Output) system to combat ISI (Inter-Symbol Interference) and frequency selective fading channel, which degrade MIMO system performance. But, orthogonality between subcarriers of OFDM can't be guaranteed under high-mobility condition. As a result, severe performance degradation due to ICI is induced. In this paper, both ICI and CAI (Co-Antenna Interference) which occurs due to correlation between multiple antennas, and performance degradation due to both ICI and CAI are analyzed. In addition to the proposed CIR (Channel Impulse Response) estimation method for avoiding loss in data transmission rate, HIC (Hybrid Interference Cancellation) approach for guaranteeing QoS of MIMO-OFDM receiver is proposed. We observe the results on analytical performance degradation due to both ICI & CAI are coincide with the simulation results and performance improvement due to HIC are also verified by simulation under SCM-E Sub-urban Macro MIMO channel.