• Title/Summary/Keyword: MobileNets

Search Result 30, Processing Time 0.02 seconds

Mobille Resource Availability Modeling in Mobile Grid System

  • Ro, Cheul Woo;Cao, Yang;Suh, In Saeng
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2010.05a
    • /
    • pp.390-392
    • /
    • 2010
  • Mobile grid system supports the integration mobile devices as grid resources. Availability of mobile resources changes dynamically in mobile grid system. Stochastic reward nets (SRN) is an extension of stochastic Petri nets and provides compact modeling facilities for system analysis. We build the SRN model to represent availability of mobile resources with disconnected operation service.

  • PDF

HetNet Characteristics and Models in 5G Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2022
  • The fifth generation (5G) mobile communication technology is designed to meet all communication needs. Heterogeneous networks (HetNets) are a new emerging network structure. HetNets have greater potential for radio resource reuse and better service quality than homogeneous networks since they can evolve small cells into macrocells. Effective resource allocation techniques reduce inter-user interference while optimizing the utilization of limited spectrum resources in HetNets. This article discusses resource allocation in 5G HetNets. This paper explains HetNets and how they work. Typical cell types in HetNets are summarized. Also, HetNets models are explained in the third section. The fourth component addresses radio resource control and mobility management. Moreover, future study in this subject may benefit from this article's significant insights on how HetNets function.

Tunnel Gateway Satisfying Mobility and Security Requirements of Mobile and IP-Based Networks

  • Jung, Youn-Chan;Peradilla, Marnel
    • Journal of Communications and Networks
    • /
    • v.13 no.6
    • /
    • pp.583-590
    • /
    • 2011
  • Full-mesh IPSec tunnels pass through a black ("unsecure") network (B-NET) to any red ("secure") networks (RNETs). These are needed in military environments, because they enable dynamically changing R-NETs to be reached from a BNET. A dynamically reconfiguring security policy database (SPD) is very difficult to manage, since the R-NETs are mobile. This paper proposes advertisement process technologies in association with the tunnel gateway's protocol that sends 'hello' and 'prefix advertisement (ADV)' packets periodically to a multicast IP address to solve mobility and security issues. We focus on the tunnel gateway's security policy (SP) adaptation protocol that enables R-NETs to adapt to mobile environments and allows them to renew services rapidly soon after their redeployment. The prefix ADV process enables tunnel gateways to gather information associated with the dynamic changes of prefixes and the tunnel gateway's status (that is, 'down'/restart). Finally, we observe two different types of performance results. First, we explore the effects of different levels of R-NET movements on SP adaptation latency. Next, we derive the other SP adaptation latency. This can suffer from dynamic deployments of tunnel gateways, during which the protocol data traffic associated with the prefix ADV protocol data unit is expected to be severe, especially when a certain tunnel gateway restarts.

Petri Nets Modelling and Performance Analysis of Multimedia Mobile Communication Systems for Channel Allocations (멀티미디어 이동 통신 시스템의 채널 할당을 위한 페트리 네트 모델링과 성능분석)

  • 노철우;최재승
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.704-711
    • /
    • 2002
  • Multimedia communication systems are characterized by supporting three different typer of services such as circuit switched services, and packet switched real Lime and non real time services. The wireless channels in a cell ate allocated by calls of these different service classes and the different service requirements have to be met. SRN is an extension of stochastic Petri nets and provides compact Modeling facilities for system analysis. To get the performance index, appropriate reward rates are assigned to its SRN. In this paper, we present a SRN model for performance analysis of channel allocation of multimedia mobile communication systems. The key contribution of this paper constitutes the Petri nets modeling techniques instead of complicate numerical analysis of Markov chains and easy way of performance analysis for channel allocations under SRN rewards concepts.

  • PDF

Agent-based Mobile Robotic Cell Using Object Oriented & Queuing Petri Net Methods in Distribution Manufacturing System

  • Yoo, Wang-Jin;Cho, Sung-Bin
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.114-125
    • /
    • 2003
  • In this paper, we deal with the problem of modeling of agent-based robot manufacturing cell. Its role is becoming increasingly important in automated manufacturing systems. For Object Oriented & Queueing Petri Nets (OO&QPNs), an extended formalism for the combined quantitative and qualitative analysis of different systems is used for structure and performance analysis of mobile robotic cell. In the case study, the OO&QPN model of a mobile robotic cell is represented and analyzed, considering multi-class parts, non-preemptive priority and alternative routing. Finally, the comparison of performance values between Shortest Process Time (SPT) rule and First Come First Serve (FCFS) rule is suggested. In general, SPT rule is most suitable for parts that have shorter processing time than others.

Key Challenges of Mobility Management and Handover Process In 5G HetNets

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.139-146
    • /
    • 2022
  • Wireless access technologies are emerging to enable high data rates for mobile users and novel applications that encompass both human and machine-type interactions. An essential approach to meet the rising demands on network capacity and offer high coverage for wireless users on upcoming fifth generation (5G) networks is heterogeneous networks (HetNets), which are generated by combining the installation of macro cells with a large number of densely distributed small cells Deployment in 5G architecture has several issues because to the rising complexity of network topology in 5G HetNets with many distinct base station types. Aside from the numerous benefits that dense small cell deployment delivers, it also introduces key mobility management issues such as frequent handover (HO), failures, delays and pingpong HO. This article investigates 5G HetNet mobility management in terms of radio resource control. This article also discusses the key challenges for 5G mobility management.

Formation of Mobile Robots with Inaccurate Sensor Information

  • Kim, Gunhee;Lee, Doo-Yong;Lee, Kyungno
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.203-209
    • /
    • 2001
  • This paper develops a control method for some generic formation tasks of multiple mobile robots with inaccurate sensor information. Inaccurate sensor information means that all the robots have only local sensors that cannot accurately measure absolute distances and directions of objects. That is, all the sensors have limitation on the range, and uncertainty in the values. Therefore, more robust and reliable control logic is proposed and implemented. The logic is developed considering generic situations and increasing the number of robots participating in the formation. Petri nets are used for modeling and design of the control logic, which can visualize the control models and make it easy to check the states of each robot. Physically homogeneous mobile robots are designed and built to evaluate the developed logic. Each robot is equipped with eighteen infrared sensors and a UHF transceiver module. The experiment results are analyzed quantitatively by using the data of the relative distances and angles between the robots. And the trajectories of the robots during the formation are also evaluated. The developed control approach is demonstrated with experiments to be successful and efficient for the formation of autonomous mobile robots.

  • PDF

Spherical Signature Description of 3D Point Cloud and Environmental Feature Learning based on Deep Belief Nets for Urban Structure Classification (도시 구조물 분류를 위한 3차원 점 군의 구형 특징 표현과 심층 신뢰 신경망 기반의 환경 형상 학습)

  • Lee, Sejin;Kim, Donghyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.115-126
    • /
    • 2016
  • This paper suggests the method of the spherical signature description of 3D point clouds taken from the laser range scanner on the ground vehicle. Based on the spherical signature description of each point, the extractor of significant environmental features is learned by the Deep Belief Nets for the urban structure classification. Arbitrary point among the 3D point cloud can represents its signature in its sky surface by using several neighborhood points. The unit spherical surface centered on that point can be considered to accumulate the evidence of each angular tessellation. According to a kind of point area such as wall, ground, tree, car, and so on, the results of spherical signature description look so different each other. These data can be applied into the Deep Belief Nets, which is one of the Deep Neural Networks, for learning the environmental feature extractor. With this learned feature extractor, 3D points can be classified due to its urban structures well. Experimental results prove that the proposed method based on the spherical signature description and the Deep Belief Nets is suitable for the mobile robots in terms of the classification accuracy.

Mobile Small Cells for Further Enhanced 5G Heterogeneous Networks

  • Lee, Choong-Hee;Lee, Sung-Hyung;Go, Kwang-Chun;Oh, Sung-Min;Shin, Jae Sheung;Kim, Jae-Hyun
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.856-866
    • /
    • 2015
  • A heterogeneous network (HetNet) is a network topology composed by deploying multiple HetNets under the coverage of macro cells (MCs). It can improve network throughput, extend cell coverage, and offload network traffic; for example, the network traffic of a 5G mobile communications network. A HetNet involves a mix of radio technologies and various cell types working together seamlessly. In a HetNet, coordination between MCs and small cells (SCs) has a positive impact on the performance of the networks contained within, and consequently on the overall user experience. Therefore, to improve user-perceived service quality, HetNets require high-efficiency network protocols and enhanced radio technologies. In this paper, we introduce a 5G HetNet comprised of MCs and both fixed and mobile SCs (mSCs). The featured mSCs can be mounted on a car, bus, or train and have different characteristics to fixed SCs (fSCs). In this paper, we address the technical challenges related to mSCs. In addition, we analyze the network performance under two HetNet scenarios-MCs and fSCs, and MCs and mSCs.

Cooperative control of multiple mobile robots (다 개체 이동 로봇의 협동 제어)

  • 이경노;이두용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.720-723
    • /
    • 1997
  • This paper presents a cooperative control method for multiple robots. This method is based on local sensors. The proposed method integrates all information obtained by local perception through a set of sensors and generates commands without logical conflicts in designing control logic. To control multiple robots effectively, a global control strategy is proposed. These methods are constructed by using AND/OR logic and transition firing sequences in Petri nets. To evaluate these methods, the object-searching task is introduced. This task is to search an object like a box by two robots and consists of two sub-tasks, i.e., a wall tracking task and a robot tracking task. Simulation results for the object-searching task and the wall tracking task are presented to show the effectiveness of the method.

  • PDF