• Title/Summary/Keyword: Mobile product recommendation services

Search Result 11, Processing Time 0.021 seconds

Consumers' Willingness to Provide Information and Cooperation Intention in the Use of Mobile Product Recommendation Services for Fashion Stores (패션점포 내 모바일 제품추천 서비스에 대한 소비자의 정보제공의도와 협력의도)

  • Lee, Hyun-Hwa;Moon, Heekang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.8
    • /
    • pp.1139-1154
    • /
    • 2013
  • This study examined the effects of consumers' usefulness and the hedonic perception of their willingness to provide information and cooperation intention in the use of location-context based mobile product recommendation services for fashion stores. We examined the influence of consumers' beliefs regarding marketer's information practices on their perceptions of provided services. In addition, the moderating effects of consumers' epistemic curiosity and information control level were investigated. A total of 400 smartphone users were included as participants for the present study. The results showed that consumers who perceived information services as more hedonic and useful are more likely to provide personal information and cooperate with marketers. The findings of the study suggest that fashion retailers who plan to introduce mobile product recommendation services should pay attention to the hedonic aspects of the services. In addition, the effects of usefulness and hedonic perception of the two dependent variables were different according to the level of epistemic curiosity and information control.

Influence of product category and features on fashion recommendation service algorithm (패션 추천서비스 알고리즘에서 상품유형과 속성 조합의 영향)

  • Choi, Ji Yoon;Lee, Kyu-Hye
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.2
    • /
    • pp.59-72
    • /
    • 2022
  • The online fashion market in the 21st century has shown rapid growth. Against this backdrop, using consumer activity data to provide customized customer services has emerged as a viable business model that draws attention. Algorithm-based personalized recommendation services are a good example. But their application in fashion products has clear limitations. It is not easy to identify consumers' perceptions of the attributes of fashion, which are various, hard to define, and very sensitive to trends. So there is a need to compile data on consumers' underlying awareness and to carry out defined research to increase the utilization of such services in the fashion industry and further engage consumers. This research aims to classify the attributes and types of fashion products and to identify consumers' perceptions of a given situation where a recommendation service is offered. To find out consumers' perceptions of and satisfaction with recommendation services, an online and mobile survey was conducted on women in their 20s and 30s, a group that uses recommendation services frequently. A total of 455 responses were used for analysis. SPSS 28.0 was used, combined with Conjoint Analysis and multiple regression, to analyze data. The study results could provide insights into a better understanding of recommendation services and be used as basic data for companies to identify consumers' preferences and draw up a detailed strategy for market segmentation.

Product Recommendation System based on User Purchase Priority

  • Bang, Jinsuk;Hwang, Doyeun;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2020
  • As personalized customer services create a society that emphasizes the personality of an individual, the number of product reviews and quantity of user data generated by users on the internet in mobile shopping apps and sites are increasing. Such product review data are classified as unstructured data. Unstructured data have the potential to be transformed into information that companies and users can employ, using appropriate processing and analyses. However, existing systems do not reflect the detailed information they collect, such as user characteristics, purchase preference, or purchase priority while analyzing review data. Thus, it is challenging to provide customized recommendations for various users. Therefore, in this study, we have developed a product recommendation system that takes into account the user's priority, which they select, when searching for and purchasing a product. The recommendation system then displays the results to the user by processing and analyzing their preferences. Since the user's preference is considered, the user can obtain results that are more relevant.

A User Adaptive Mobile Commerce Support System (개인 적응형 모바일 전자상거래 지원 시스템)

  • Lee Eunseok;Jang Sera
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.2
    • /
    • pp.180-191
    • /
    • 2005
  • The rapid growth of mobile communication technology has provided the expansion of mobile internet services, particularly mobile commerce takes much weight among them. Even though current mobile commerce service has serious problems which check its development, such as limited contents, expensive charge system and hardware restriction of mobile device, it is strongly expected as one of the next generation Internet services. In this paper, we summarize the problems like above and provide some total solution to meet them as follows: a function for automatic gathering of product information on online Internet and automatic translation it to data for mobile commerce, a middlelet application which provides functions for product search and order on the mobile device through off-line processing, and a function of user adaptive recommendation. We have actually designed and implemented the proposed system and verified the functions and effectiveness of the system.

Analysis of the Effects of E-commerce User Ratings and Review Helfulness on Performance Improvement of Product Recommender System (E-커머스 사용자의 평점과 리뷰 유용성이 상품 추천 시스템의 성능 향상에 미치는 영향 분석)

  • FAN, LIU;Lee, Byunghyun;Choi, Ilyoung;Jeong, Jaeho;Kim, Jaekyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.311-328
    • /
    • 2022
  • Because of the spread of smartphones due to the development of information and communication technology, online shopping mall services can be used on computers and mobile devices. As a result, the number of users using the online shopping mall service increases rapidly, and the types of products traded are also growing. Therefore, to maximize profits, companies need to provide information that may interest users. To this end, the recommendation system presents necessary information or products to the user based on the user's past behavioral data or behavioral purchase records. Representative overseas companies that currently provide recommendation services include Netflix, Amazon, and YouTube. These companies support users' purchase decisions by recommending products to users using ratings, purchase records, and clickstream data that users give to the items. In addition, users refer to the ratings left by other users about the product before buying a product. Most users tend to provide ratings only to products they are satisfied with, and the higher the rating, the higher the purchase intention. And recently, e-commerce sites have provided users with the ability to vote on whether product reviews are helpful. Through this, the user makes a purchase decision by referring to reviews and ratings of products judged to be beneficial. Therefore, in this study, the correlation between the product rating and the helpful information of the review is identified. The valuable data of the evaluation is reflected in the recommendation system to check the recommendation performance. In addition, we want to compare the results of skipping all the ratings in the traditional collaborative filtering technique with the recommended performance results that reflect only the 4 and 5 ratings. For this purpose, electronic product data collected from Amazon was used in this study, and the experimental results confirmed a correlation between ratings and review usefulness information. In addition, as a result of comparing the recommendation performance by reflecting all the ratings and only the 4 and 5 points in the recommendation system, the recommendation performance of remembering only the 4 and 5 points in the recommendation system was higher. In addition, as a result of reflecting review usefulness information in the recommendation system, it was confirmed that the more valuable the review, the higher the recommendation performance. Therefore, these experimental results are expected to improve the performance of personalized recommendation services in the future and provide implications for e-commerce sites.

How Internet has Reshaped the User Experience of Banking Service?

  • Nam, Kiheung;Lee, Zoonky;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.684-702
    • /
    • 2016
  • The changes new technologies have brought to banking over the past decade are enormous in their impact on the ways of doing business and providing customer services, most notably in the areas of customer service channels. Banks have been trying to move away from the traditional, branch-based and costly staff-assisted channels toward self-assisted channels, i.e. internet banking and mobile banking, to drive down costs and improve customer loyalty. How internet and mobile have reshaped the user experience of banking service channel? To provide valuable insights for this question, this research investigates and compares customer's channel choice behavior and profit changes from bank's branch closure. Applying the propensity scoring matching method, the results of analysis demonstrates that the mobile channel can be a realistic alternative to conventional branches. Also, the reserch result shows banks can reduce conventional branches while experiencing a positive implications on their profits from the customers. Another significant implication from the research is, to accelerate the shift to digital channels, banks need to put more efforts on developing functions in the mobile channel that will allow friendly interaction with customers and consultation, such as video consultation, interactive chat, and location-based product recommendation.

A Study of the Beauty Commerce Customer Segment Classification and Application based on Machine Learning: Focusing on Untact Service (머신러닝 기반의 뷰티 커머스 고객 세그먼트 분류 및 활용 방안: 언택트 서비스 중심으로)

  • Sang-Hyeak Yoon;Yoon-Jin Choi;So-Hyun Lee;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.75-92
    • /
    • 2020
  • As population and generation structures change, more and more customers tend to avoid facing relation due to the development of information technology and spread of smart phones. This phenomenon consists with efficiency and immediacy, which are the consumption patterns of modern customers who are used to information technology, so offline network-oriented distribution companies actively try to switch their sales and services to untact patterns. Recently, untact services are boosted in various fields, but beauty products are not easy to be recommended through untact services due to many options depending on skin types and conditions. There have been many studies on recommendations and development of recommendation systems in the online beauty field, but most of them are the ones that develop recommendation algorithm using survey or social data. In other words, there were not enough studies that classify segments based on user information such as skin types and product preference. Therefore, this study classifies customer segments using machine learning technique K-prototypesalgorithm based on customer information and search log data of mobile application, which is one of untact services in the beauty field, based on which, untact marketing strategy is suggested. This study expands the scope of the previous literature by classifying customer segments using the machine learning technique. This study is practically meaningful in that it classifies customer segments by reflecting new consumption trend of untact service, and based on this, it suggests a specific plan that can be used in untact services of the beauty field.

A Study on Consumers' Responses to Shopping Chatbot: The Effects of Agent and Message Types (쇼핑 챗봇에 대한 소비자 반응 연구: 에이전트와 메시지 유형 효과를 중심으로)

  • Song, YuJin;Kim, MinHee;Choi, Sejung Marina
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.71-81
    • /
    • 2019
  • As AI technology develops, its application has been extended to diverse fields. In particular, AI-enabled Chatbot services have garnered growing attention and such services are more important as a tool of communication in mobile shopping. However, research on chatbots is in its early stage and the understanding of chatbots in the context of mobile commerce is very limited. The purpose of this study is to empirically investigate consumer responses to a shopping chatbot with a focus on the effects of chatbot agent types and message types. Specifically, a $2{\times}2$ between-subjects experimental design, with the agent type (secretary/friend) and the message type (factual/evaluative) as the independent variables, was employed. The results show that although main effects of chatbot agent and message types are not found, interaction effects between chatbot agents and message types on consumer responses are significant. Specifically, when the agent type was a secretary, consumer responses to product recommendation with a factual message were more positive. On the other hand, in the case of the friend agent, the evaluative message led to more positive responses. The findings suggest that communication elements are important in the understanding of consumer responses to chatbots in mobile shopping and effective strategies for utilizing chatbots for mobile commerce should be considered.

A Store Recommendation Procedure in Ubiquitous Market for User Privacy (U-마켓에서의 사용자 정보보호를 위한 매장 추천방법)

  • Kim, Jae-Kyeong;Chae, Kyung-Hee;Gu, Ja-Chul
    • Asia pacific journal of information systems
    • /
    • v.18 no.3
    • /
    • pp.123-145
    • /
    • 2008
  • Recently, as the information communication technology develops, the discussion regarding the ubiquitous environment is occurring in diverse perspectives. Ubiquitous environment is an environment that could transfer data through networks regardless of the physical space, virtual space, time or location. In order to realize the ubiquitous environment, the Pervasive Sensing technology that enables the recognition of users' data without the border between physical and virtual space is required. In addition, the latest and diversified technologies such as Context-Awareness technology are necessary to construct the context around the user by sharing the data accessed through the Pervasive Sensing technology and linkage technology that is to prevent information loss through the wired, wireless networking and database. Especially, Pervasive Sensing technology is taken as an essential technology that enables user oriented services by recognizing the needs of the users even before the users inquire. There are lots of characteristics of ubiquitous environment through the technologies mentioned above such as ubiquity, abundance of data, mutuality, high information density, individualization and customization. Among them, information density directs the accessible amount and quality of the information and it is stored in bulk with ensured quality through Pervasive Sensing technology. Using this, in the companies, the personalized contents(or information) providing became possible for a target customer. Most of all, there are an increasing number of researches with respect to recommender systems that provide what customers need even when the customers do not explicitly ask something for their needs. Recommender systems are well renowned for its affirmative effect that enlarges the selling opportunities and reduces the searching cost of customers since it finds and provides information according to the customers' traits and preference in advance, in a commerce environment. Recommender systems have proved its usability through several methodologies and experiments conducted upon many different fields from the mid-1990s. Most of the researches related with the recommender systems until now take the products or information of internet or mobile context as its object, but there is not enough research concerned with recommending adequate store to customers in a ubiquitous environment. It is possible to track customers' behaviors in a ubiquitous environment, the same way it is implemented in an online market space even when customers are purchasing in an offline marketplace. Unlike existing internet space, in ubiquitous environment, the interest toward the stores is increasing that provides information according to the traffic line of the customers. In other words, the same product can be purchased in several different stores and the preferred store can be different from the customers by personal preference such as traffic line between stores, location, atmosphere, quality, and price. Krulwich(1997) has developed Lifestyle Finder which recommends a product and a store by using the demographical information and purchasing information generated in the internet commerce. Also, Fano(1998) has created a Shopper's Eye which is an information proving system. The information regarding the closest store from the customers' present location is shown when the customer has sent a to-buy list, Sadeh(2003) developed MyCampus that recommends appropriate information and a store in accordance with the schedule saved in a customers' mobile. Moreover, Keegan and O'Hare(2004) came up with EasiShop that provides the suitable tore information including price, after service, and accessibility after analyzing the to-buy list and the current location of customers. However, Krulwich(1997) does not indicate the characteristics of physical space based on the online commerce context and Keegan and O'Hare(2004) only provides information about store related to a product, while Fano(1998) does not fully consider the relationship between the preference toward the stores and the store itself. The most recent research by Sedah(2003), experimented on campus by suggesting recommender systems that reflect situation and preference information besides the characteristics of the physical space. Yet, there is a potential problem since the researches are based on location and preference information of customers which is connected to the invasion of privacy. The primary beginning point of controversy is an invasion of privacy and individual information in a ubiquitous environment according to researches conducted by Al-Muhtadi(2002), Beresford and Stajano(2003), and Ren(2006). Additionally, individuals want to be left anonymous to protect their own personal information, mentioned in Srivastava(2000). Therefore, in this paper, we suggest a methodology to recommend stores in U-market on the basis of ubiquitous environment not using personal information in order to protect individual information and privacy. The main idea behind our suggested methodology is based on Feature Matrices model (FM model, Shahabi and Banaei-Kashani, 2003) that uses clusters of customers' similar transaction data, which is similar to the Collaborative Filtering. However unlike Collaborative Filtering, this methodology overcomes the problems of personal information and privacy since it is not aware of the customer, exactly who they are, The methodology is compared with single trait model(vector model) such as visitor logs, while looking at the actual improvements of the recommendation when the context information is used. It is not easy to find real U-market data, so we experimented with factual data from a real department store with context information. The recommendation procedure of U-market proposed in this paper is divided into four major phases. First phase is collecting and preprocessing data for analysis of shopping patterns of customers. The traits of shopping patterns are expressed as feature matrices of N dimension. On second phase, the similar shopping patterns are grouped into clusters and the representative pattern of each cluster is derived. The distance between shopping patterns is calculated by Projected Pure Euclidean Distance (Shahabi and Banaei-Kashani, 2003). Third phase finds a representative pattern that is similar to a target customer, and at the same time, the shopping information of the customer is traced and saved dynamically. Fourth, the next store is recommended based on the physical distance between stores of representative patterns and the present location of target customer. In this research, we have evaluated the accuracy of recommendation method based on a factual data derived from a department store. There are technological difficulties of tracking on a real-time basis so we extracted purchasing related information and we added on context information on each transaction. As a result, recommendation based on FM model that applies purchasing and context information is more stable and accurate compared to that of vector model. Additionally, we could find more precise recommendation result as more shopping information is accumulated. Realistically, because of the limitation of ubiquitous environment realization, we were not able to reflect on all different kinds of context but more explicit analysis is expected to be attainable in the future after practical system is embodied.

The Impact of O4O Selection Attributes on Customer Satisfaction and Loyalty: Focusing on the Case of Fresh Hema in China (O4O 선택속성이 고객만족도 및 고객충성도에 미치는 영향: 중국 허마셴셩 사례를 중심으로)

  • Cui, Chengguo;Yang, Sung-Byung
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.249-269
    • /
    • 2020
  • Recently, as the online market has matured, it is facing many problems to prevent the growth. The most common problem is the homogenization of online products, which fails to increase the number of customers any more. Moreover, although the portion of the online market has increased significantly, it now becomes essential to expand offline for further development. In response, many online firms have recently sought to expand their businesses and marketing channels by securing offline spaces that can complement the limitations of online platforms, on top of their existing advantages of online channels. Based on their competitive advantage in terms of analyzing large volumes of customer data utilizing information technologies (e.g., big data and artificial intelligence), they are reinforcing their offline influence as well through this online for offline (O4O) business model. On the other hand, most of the existing research has primarily focused on online to offline (O2O) business model, and there is still a lack of research on O4O business models, which have been actively attempted in various industrial fields in recent years. Since a few of O4O-related studies have been conducted only in an experience marketing setting following a case study method, it is critical to conduct an empirical study on O4O selection attributes and their impact on customer satisfaction and loyalty. Therefore, focusing on China's representative O4O business model, 'Fresh Hema,' this study attempts to identify some key selection attributes specialized for O4O services from the customers' viewpoint and examine the impact of these attributes on customer satisfaction and loyalty. The results of the structural equation modeling (SEM) with 300 O4O (Fresh Hema) experienced customers, reveal that, out of seven O4O selection attributes, four (mobile app quality, mobile payment, product quality, and store facilities) have an impact on customer satisfaction, which also leads to customer loyalty (reuse intention, recommendation intention, and brand attachment). This study would help managers in an O4O area well adapt to rapidly changing customer needs and provide them with some guidelines for enhancing both customer satisfaction and loyalty by allocating more resources to more significant selection attributes, rather than less significant ones.