• Title/Summary/Keyword: Mobile phone batteries

Search Result 9, Processing Time 0.023 seconds

Analysis of Discharge Characteristics and Fire Risk of Mobile Phone Batteries according to the Concentration of Salt Water (염수농도에 따른 휴대폰 배터리의 방전특성과 화재 위험성 분석)

  • Woo, Jin-Su;So, Soo-Hyun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.66-71
    • /
    • 2020
  • The process of discharging batteries using salt water, when used for the disposal of a lithium-ion (Li-ion) batteries, is likely to cause a fire. However, there is a dearth of studies in the literature on the risk of fire while discharging mobile phone batteries in salt water. In order to investigate the possibility of fire by elucidating the discharge characteristics and the generation of heat, we conducted experiments by varying the concentration of the salt water, number of overlapping batteries, and type of the mobile phone batteries used as experimental specimen. The discharging voltage and the temperature of the batteries were measured, and the fire risk was predicted by analyzing the data. The results of the experiment showed that the higher the salt water concentration, the greater the discharge value of the mobile phone battery and the higher the exothermic temperature. Moreover, the exothermic temperatures of the overlapping batteries were higher than that of the single battery submerged in salt water. The highest exothermic temperature points of the battery occurred at the positive and negative poles.

Experimental Study on the Explosion and Fire Risks of Mobile Phone Batteries (휴대폰 배터리의 폭발 및 화재 위험성에 관한 실험적 연구)

  • Lee, Ho-Sung;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.111-120
    • /
    • 2016
  • This is an experimental study to analyze the explosion and fire hazards of mobile phone batteries. Using the lithium-ion batteries currently used on smart phone as the experiment samples, the experiments were conducted by overcharging, internal and external short circuit, and thermal shock with the potential of explosion and fire caused by careless use or abnormal conditions. The experiment results showed that, in the case of overcharging and external short circuit, there was no explosion and fire hazard in the normal operation of the protection circuit module (PCM), but there were big risks when the PCM faulted conditions were assumed. In the case of the experiments by internal short circuit and thermal shock, such risks varied depending on a battery charge state. In other words, it could be verified that there were low risks of explosion and fire in a full discharge state, but there were high risks in a full charge state. These experiment results suggest that to minimize the explosion and fire hazards of mobile phone batteries, an alarm device is necessary when the PCM fault occurs. In addition, a solid battery case should be made and safety equipment, such as a cooling device to avoid high temperature, is needed.

The development of mobile fuel cell (모바일용 연료전지 개발)

  • Lee K.I.;Park M.S.;Cho Y.H.;Cho Y.H.;Sung Y.E.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.549-550
    • /
    • 2006
  • Mobile fuel cell is highlighted in these days because mobile fuel cell can contain more energy than existing batteries. Nowadays mobile devices like cellular phone, PMP(portable multi-media player), notebook, and etc. need more energy, But existing batteries like Li-ion or Ni-MH batteries are not going to satisfy such demands. In this paper, mobile fuel cell is developed. Its size is 50*70*8mm and it is made of aluminium plates. The fuel cell type is PEM and the fuel is pure hydrogen and oxygen.

  • PDF

Two Machine Learning Models for Mobile Phone Battery Discharge Rate Prediction Based on Usage Patterns

  • Chantrapornchai, Chantana;Nusawat, Paingruthai
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.436-454
    • /
    • 2016
  • This research presents the battery discharge rate models for the energy consumption of mobile phone batteries based on machine learning by taking into account three usage patterns of the phone: the standby state, video playing, and web browsing. We present the experimental design methodology for collecting data, preprocessing, model construction, and parameter selections. The data is collected based on the HTC One X hardware platform. We considered various setting factors, such as Bluetooth, brightness, 3G, GPS, Wi-Fi, and Sync. The battery levels for each possible state vector were measured, and then we constructed the battery prediction model using different regression functions based on the collected data. The accuracy of the constructed models using the multi-layer perceptron (MLP) and the support vector machine (SVM) were compared using varying kernel functions. Various parameters for MLP and SVM were considered. The measurement of prediction efficiency was done by the mean absolute error (MAE) and the root mean squared error (RMSE). The experiments showed that the MLP with linear regression performs well overall, while the SVM with the polynomial kernel function based on the linear regression gives a low MAE and RMSE. As a result, we were able to demonstrate how to apply the derived model to predict the remaining battery charge.

Using TRIZ Techniques to New Product Function Development of Smart Phones

  • Chen, Long-Sheng;Chen, Shih-Hsun
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.179-184
    • /
    • 2011
  • Recently, the fast development of communication technologies has brought a great convince for human beings' life. Lots of commercial services and transactions can be done by using mobile communication equipments such as smart phones. Consequently, smart phones have attracted lots of companies to invest them for their potential growth of market. Compared with basic feature phone, a smart phone can offer more advanced computing ability and connectivity. However, based on the responses of customers, there still are many defectives such as not friendly and smooth operation, short standby time of batteries, threat of virus infected and so on needed to be improved. Therefore, this study will propose a product innovative function development procedure into TRIZ (theory of inventive problem solving) to transform voice of customers into product design and to create novel functions, respectively. A case study of smart phones will be provided to illustrate the effectiveness of the proposed method.

Shapes and Thermomechanical Analyses of a Hot Roll for Manufacturing Electrodes of Polymer Batteries (폴리머 배터리 전극제조용 압연 고온롤 표면의 형상 및 유한요소 열변형 해석)

  • Kim, Cheol;Jang, Dong-Sue;Yu, Seon-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.847-854
    • /
    • 2007
  • The battery electrode of a mobile phone is made of layered polymer coated on aluminum foils and the hot rolling process is applied to increase the density per volume of an electrode for a high capacity battery. The flatness of batteries surfaces should be less than $2{\mu}m$. To satisfy the required flatness, the deformation of roll surface due to bending and heating of the roll should be minimized. Complicated hot oil paths of $100^{\circ}C$ inside the roll are required for heating the polymer layers. FEA was used to calculate thermal deformations and temperatures distributions of the roller. Based on FEA, a modified surface curvature called a crown roll was suggested and this gave the area of 30% improved flatness compared with a flat roll. The flat roll satisfied the flatness of $2{\mu}m$ in the length of 340 mm and the crown roll resulted in the longer length of 460 mm. Experiments to measure the temperature distribution and thermal strain were performed and compared with FEA. There were only 6% difference between two results.

A Position Tracking System Using Pattern Matching and Regression Curve (RFID 태그를 이용한 실내 위치 추적 시스템에 관한 연구)

  • Cho, Jaehyung
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.211-217
    • /
    • 2019
  • Location positioning systems are available in applications such as mobile, robotic tracking systems and Wireless location-based service (LBS) applications. The GPS system is the most well-known location tracking system, but it is not easy to use indoors. The method of radio frequency identification (RFID) location tracking was studied in terms of cost-effectiveness for indoor location tracking systems. Most RFID systems use active RFID tags using expendable batteries, but in this paper, an inexpensive indoor location tracking system using passive RFID tags has been developed. A pattern matching method and a system for tracing location by generating regression curves were studied to use precision tracking algorithms. The system was tested by verifying the level of error caused by noise. The three-dimensional curves are produced by the regression equation estimated the statistically meaningful coordinates by the differential equation. The proposed system could also be applied to mobile robot systems, AGVs and mobile phone LBSs.

Power Aware Routing Protocol in Multimedia Ad-hoc Network Considering Hop Lifetime of Node

  • Huh, Jun-Ho;Kim, Yoondo;Seo, Kyungryong
    • Journal of Multimedia Information System
    • /
    • v.1 no.2
    • /
    • pp.101-110
    • /
    • 2014
  • The purpose of this research is to extend Ad-hoc network system lifetime with the proposed routing protocol which has considered hop lifetimes of the nodes while guaranteeing QoS in the establishment process of Ad-hoc network communication paths. Based on another power aware routing system that proposed in the advanced research [1], we are proposing an alternative power aware routing system in which nodes' hop lifetimes are compared in order to extend the lifetime of an Ad-hoc network system and delay factors have been considered for the assurance of QoS. The research of the routing protocol in this paper, which aims to maximize the system survival time considering power consumption status during the path searching in MANET and pursues the mechanism that controls hop delays for the same reason, can be applied to the study of WSN. The study concerning such phenomena is essential so that the proposed protocol has been simulated and verified with NS-2 in Linux system focusing on the lifetimes of the hops of the nodes. Commercialization of smart devices and arrival of the ubiquitous age has brought about the world where all the people and things are connected with networks. Since the proposed power aware method and the hop delay control mechanism used to find the adequate communication paths in MANET which mainly uses batteries or in WSN, they can largely contribute to the lifetime extension of the network system by reducing power consumptions when utilized for the communications attempts among soldiers during military operation, disaster areas, temporary events or exhibitions, mobile phone shadow areas, home networks, in-between vehicle communications and sense networks, etc. This paper presents the definitions and some advantages regarding the proposed outing protocol that sustain and extend the lifetime of the networks.

  • PDF

A Study on the Recycle of Carbon Material in Anode of Secondary Battery (이차전지 음극재 탄소 소재 재활용에 대한 연구)

  • Han, Gyoung-Jae;Kim, Yu-Jin;Yoon, Seong-Jin;Kang, Yu-Jin;Jang, Min-Hyeok;Jo, Hyung-Kun;Cho, Hye-Ryeong;Seo, Dong-Jin;Park, Joo-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.59-66
    • /
    • 2022
  • Lithium-ion batteries have greatly expanded along with the mobile phone market, and as the electric vehicle business is activated in earnest, they will attract many people's attention even afterwards. Until now, many people have attracted attention to the recovery of valuable metals inside lithium-ion batteries, but graphite, which is mainly used as an anode material, is also worth recycling. Therefore, in order to recover graphite with high purity and valuable metals, graphite that can be used as an anode material of a secondary battery may be generated again through a regeneration process of purifying and separating graphite from a waste lithium-ion battery and recovering electrical characteristics of graphite. This paper describes the process of converting waste graphite into regenerated graphite and the environmental and economic effects of regenerated graphite.