• Title/Summary/Keyword: Mobile navigation

Search Result 1,082, Processing Time 0.028 seconds

A Deep Convolutional Neural Network Based 6-DOF Relocalization with Sensor Fusion System (센서 융합 시스템을 이용한 심층 컨벌루션 신경망 기반 6자유도 위치 재인식)

  • Jo, HyungGi;Cho, Hae Min;Lee, Seongwon;Kim, Euntai
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.87-93
    • /
    • 2019
  • This paper presents a 6-DOF relocalization using a 3D laser scanner and a monocular camera. A relocalization problem in robotics is to estimate pose of sensor when a robot revisits the area. A deep convolutional neural network (CNN) is designed to regress 6-DOF sensor pose and trained using both RGB image and 3D point cloud information in end-to-end manner. We generate the new input that consists of RGB and range information. After training step, the relocalization system results in the pose of the sensor corresponding to each input when a new input is received. However, most of cases, mobile robot navigation system has successive sensor measurements. In order to improve the localization performance, the output of CNN is used for measurements of the particle filter that smooth the trajectory. We evaluate our relocalization method on real world datasets using a mobile robot platform.

LiDAR-based Mobile Robot Exploration Considering Navigability in Indoor Environments (실내 환경에서의 주행가능성을 고려한 라이다 기반 이동 로봇 탐사 기법)

  • Hyejeong Ryu;Jinwoo Choi;Taehyeon Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.4
    • /
    • pp.487-495
    • /
    • 2023
  • This paper presents a method for autonomous exploration of indoor environments using a 2-dimensional Light Detection And Ranging (LiDAR) scanner. The proposed frontier-based exploration method considers navigability from the current robot position to extracted frontier targets. An approach to constructing the point cloud grid map that accurately reflects the occupancy probability of glass obstacles is proposed, enabling identification of safe frontier grids on the safety grid map calculated from the point cloud grid map. Navigability, indicating whether the robot can successfully navigate to each frontier target, is calculated by applying the skeletonization-informed rapidly exploring random tree algorithm to the safety grid map. While conventional exploration approaches have focused on frontier detection and target position/direction decision, the proposed method discusses a safe navigation approach for the overall exploration process until the completion of mapping. Real-world experiments have been conducted to verify that the proposed method leads the robot to avoid glass obstacles and safely navigate the entire environment, constructing the point cloud map and calculating the navigability with low computing time deviation.

Prediction on the Performance Variation by the Rover Position of the One-way Network RTK (사용자 위치별 단방향 Network RTK 측위 성능 예측)

  • Park, Byungwoon;Wang, Namkyong;Kee, Changdon;Park, Heungwon;Seo, Seungwoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.107-108
    • /
    • 2014
  • As the demand for precise navigation has increased, more focus is put on the precise positioning, RTK(Real Time Kinematics) which has been used in the surveying field. The Position of Single Reference Station RTK or two-way network RTK such as VRS (Virtual Reference Station) is accurate enough to be used as a main technology in land surveying, however its service area and number of users is limited and the users are assumed static. This characteristic is not suitable to the navigation, whose service target is infinite number of users moving over a wide area. One-way network RTK has recently been suggested as a solution for the precise navigation technique for the mobile user. This paper shows the performance prediction of the one-way network RTK such as MAC(Master-Auxiliary Concept), or FKP (Flachenkorrekturparameter). To show the performance variation by the rover position, we constructed a simulation data of users on the grid with 0.1 degree spacing between 36.5 and 37 degree latitude and between 127 and 127.5 degree longitude.

  • PDF

Towards a Pedestrian Emotion Model for Navigation Support (내비게이션 지원을 목적으로 한 보행자 감성모델의 구축)

  • Kim, Don-Han
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.197-206
    • /
    • 2010
  • For an emotion retrieval system implementation to support pedestrian navigation, coordinating the pedestrian emotion model with the system user's emotion is considered a key component. This study proposes a new method for capturing the user's model that corresponds to the pedestrian emotion model and examines the validity of the method. In the first phase, a database comprising a set of interior images that represent hypothetical destinations was developed. In the second phase, 10 subjects were recruited and asked to evaluate on navigation and satisfaction toward each interior image in five rounds of navigation experiments. In the last phase, the subjects' feedback data was used for of the pedestrian emotion model, which is called ‘learning' in this study. After evaluations by the subjects, the learning effect was analyzed by the following aspects: recall ratio, precision ratio, retrieval ranking, and satisfaction. Findings of the analysis verify that all four aspects significantly were improved after the learning. This study demonstrates the effectiveness of the learning algorithm for the proposed pedestrian emotion model. Furthermore, this study demonstrates the potential of such pedestrian emotion model to be well applicable in the development of various mobile contents service systems dealing with visual images such as commercial interiors in the future.

  • PDF

A Markerless Augmented Reality Approach for Indoor Information Visualization System (실내 정보 가시화에 의한 u-GIS 시스템을 위한 Markerless 증강현실 방법)

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.195-199
    • /
    • 2009
  • Augmented reality is a field of computer research which deals with the combination of real-world and computer-generated data, where computer graphics objects are blended into real footage in real time and it has tremendous potential in visualizing geospatial information. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or marker based approaches. Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed RF based tracking and localization. However, it does cause deployment problems of large sensors and readers. In this paper, we present a noble markerless AR approach for indoor navigation system only using a camera. We will apply this work to mobile seamless indoor/outdoor u-GIS system.

  • PDF

The Technology of Connected Car (커넥티드 카의 기술)

  • Shim, Hyun-Bo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.590-598
    • /
    • 2016
  • It comes into the spotlight as the new Blue Ocean in which the connected car industry in which the car and mobile communication technology is convergence. All sorts of infortainments services connecting with the portable electronic device(Smart phone, tablet PC, and MP3 player) and car are rapidly grown. The Connected car emphasizes the vehicle connectivity with the concept that the car has communication with the around on a real time basis and it provides the safety and expedience to the operator and using the thing of Internet (IoT) in the car and supports the application, presently, the entertainment service including the real-time Navigation, parking assistant function, not only the remote vehicle control and management service but also Email, multimedia streaming service, SNS and with the platform. Intelligent vehicle network is studied as the kind according to MANET(Mobile Ad Hoc Network) for the safety operation of the cars of the road and improving the efficiency of the driving.

Design, Development and Testing of the Modular Unmanned Surface Vehicle Platform for Marine Waste Detection

  • Vasilj, Josip;Stancic, Ivo;Grujic, Tamara;Music, Josip
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.195-204
    • /
    • 2017
  • Mobile robots are used for years as a valuable research and educational tool in form of available open-platform designs and Do-It-Yourself kits. Rapid development and costs reduction of Unmanned Air Vehicles (UAV) and ground based mobile robots in recent years allowed researchers to utilize them as an affordable research platform. Despite of recent developments in the area of ground and airborne robotics, only few examples of Unmanned Surface Vehicle (USV) platforms targeted for research purposes can be found. Aim of this paper is to present the development of open-design USV drone with integrated multi-level control hardware architecture. Proposed catamaran - type water surface drone enables direct control over wireless radio link, separate development of algorithms for optimal propulsion control, navigation and communication with the ground-based control station. Whole design is highly modular, where each component can be replaced or modified according to desired task, payload or environmental conditions. Developed USV is planned to be utilized as a part of the system for detection and identification of marine and lake waste. Cameras mounted to the USV would record sea or lake surfaces, and recorded video sequences and images would be processed by state-of-the-art computer vision and machine learning algorithms in order to identify and classify marine and lake waste.

Mobile Guidance System for Evacuation based on Wi-Fi System and Node Architecture

  • Raju, Timalsina;Kim, Woo Sung
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.5
    • /
    • pp.41-56
    • /
    • 2019
  • Recently great loss of life and property is occurring because of fire, natural disaster, earth quake, tsunami and so on. People spend 80~90% of their time indoor environment like office, supermarket, campus. Therefore Indoor navigation and guidelines system became so essential for most of all. Incase of emergency we must be careful earlier, in such a cases 5G kind of new technology may also cannot work. So immediate action and quick routing notification for guidelines and protection is the most. Considering this issue We proposed indoor evacuating guidance system based on microcontroller Wi-Fi board for Indoor APP using mobile. Focusing various kind of technology like, ok google, voice search APP we purposed node architecture based system. When we listen fire alarm while living inside the room. Then to be safe we connect with server and start Arduino UNO+IoT ESP8266 Wi-Fi shield version1-IoT module to store data in MySQL DB server. We make application to escape out from the building up-to the three exits giving information from source point to destination. Our program can send information to the users emergency location and situations. For this when the user get sound or vibration in their mobile device it indicate fire out near by. At that time we update message from Arduino to DB server for the fixed current position inside the building which give routing signal for that fire out location by changing values from 0 to 1. We have user in point 10 where user is near by. Later we detect Wi-Fi signal form Nodemcu as room of each floor and try to connect with user. Main purpose of this paper is to save life of people in short time and find out the shortest path up to nearest exits in the time of emergencies and rescue them.

Development of Force Feedback Joystick for Remote Control of a Mobile Robot (이동로봇의 원격제어를 위한 힘 반향 조이스틱의 개발)

  • Suh, Se-Wook;Yoo, Bong-Soo;Joh, Joong-Seon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • The main goal of existing mobile robot system was a complete autonomous navigation and the vision information was just used as an assistant way such as monitoring For this reason, the researches have been going towards sophistication of autonomousness gradually and the production costs also has been risen. However, it is also important to control remotely an inexpensive mobile robot system which has no intelligence at all. Such systems may be much more effective than fully autonomous systems in practice. Visual information from a simple camera and distance information from ultrasonic sensors are used for this system. Collision avoidance becomes the most important problem for this system. In this paper, we developed a force feedback joystick to control the robot system remotely with collision avoiding capability. Fuzzy logic is used for the algorithm in order to implement the expert s knowledge intelligently. Some experimental results show the force feedback joystick werks very well.

ARVisualizer : A Markerless Augmented Reality Approach for Indoor Building Information Visualization System

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.455-465
    • /
    • 2008
  • Augmented reality (AR) has tremendous potential in visualizing geospatial information, especially on the actual physical scenes. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or ubiquitous marker based approaches. Although there are several papers written with vision based markerless tracking, previous approaches provide fairly good results only in largely under "controlled environments." Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed Radio Frequency (RF) based tracking and localization. However, it does cause deployment problems of large RF-based sensors and readers. In this paper, we present a noble markerless AR approach for indoor (possible outdoor, too) navigation system only using monoSLAM (Monocular Simultaneous Localization and Map building) algorithm to full-fill our grand effort to develop mobile seamless indoor/outdoor u-GIS system. The paper briefly explains the basic SLAM algorithm, then the implementation of our system.

  • PDF