• Title/Summary/Keyword: Mobile Satellite

Search Result 420, Processing Time 0.027 seconds

An Improvement of Performance in a Satellite Antenna Tracking Control System for Mobile DAB Reception (DAB수신을 위한 이동체용 위성 안테나 트랙킹 시스템의 성능 개선)

  • Jeong Joong-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1178-1184
    • /
    • 2004
  • This paper presents the development of a satellite antenna tracking control system using a plane antenna for mobile DAB(Digital Audio Broadcasting) reception. To track more rapidly in the antenna of this system, this simple tracking system only tracks a direction of azimuth using pendulum in the direction of elevation. This system should track using the AGC(Automatic Gain Control) of the signal level which can receive DAB in spite of the changing of point and movement of the mobile. The directional gyro sensor is attached to solve the delay time in the Proposed tracking algorithm. The effectiveness of both the stabilization and tracking algorithm is demonstrated through experiment measuring AGC signal level. The implemented satellite antenna tracking control system is shown to be excellent for mobile DAB reception.

Evaluation of a Layered Coding Scheme for Integrated Mobile Satellite Systems (위성/지상 통합망에서의 계층적 부호화방식에 대한 고찰)

  • Shang, Pingping;Kim, Soo-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.66-71
    • /
    • 2011
  • This paper evaluates the performance and effectiveness of a layered coding scheme for an integrated mobile satellite systems, where the main target services are multimedia broadcasting and multicasting services (MBMS). In this integrated system, the satellite and complementary ground components (CGC) cooperate to provide high quality services. A layered coding scheme is a receiver driven adaptive schemes which adapts to the channel condition at the receiver. In this paper, we introduce a layered turbo coding scheme, and evaluates the performance in various scenarios, and discuss its effectiveness. The demonstrated results in the paper can be utilized in order to design an efficient integrated mobile satellite system, in the future.

A Novel Detection Method of the Satellite Phone Signal based on Array Antennas (Array 안테나를 이용한 위성전화신호의 검출 방법)

  • Kim, Yun-Bong;Song, Jeong-Ig;Ning, Han;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.53-58
    • /
    • 2007
  • The Satellite Mobile Communication System holds several advantages, such as wide coverage that guarantees the communication in a huge area. It is suitable in the ocean and forest and especially in emergency situation. However, the licensed frequency is not always occupied within all coverage and all the time. The actual utilization rate is relatively low compared to other wireless communications such as cellular systems. There are a large amount of white spaces in its coverage. Therefore, it is necessary to consider introducing additional services such as data communication, in order to increase the spectrum utilization as well as the revenue of the Satellite service provider. In this paper, we first analyze the possibility to implement new services in the licensed band of satellite mobile phone by its provider. Then we address the most significant issue for the implementation of current service, which is how to accurately detect the satellite mobile terminals. Finally, we suggest two new possible solutions namely, eigenvalue detection based methods to find out the existence of transmitted signal from the satellite mobile terminals.

  • PDF

ITU-R Study on Frequency Allocation to Narrowband Mobile Satellite Services (NB-MSS) (ITU-R의 협대역 이동위성업무를 위한 주파수 분배 연구 현황)

  • Ku, B.J.;Oh, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.6
    • /
    • pp.36-45
    • /
    • 2021
  • As the global demand for satellite IoT services using small satellites increases, interest in their frequency requirements has also increased. Consequently, International Telecommunication Union Radiocommunication Sector (ITU-R) preparatory studies for WRC-23 include AI 1.18, which considers new frequency allocations for narrowband mobile satellites. This agenda item was issued in accordance with Resolution 284 (WRC-19), and contributions and reviews by government and satellite operators are underway at ITU-R SG4 WP4C with the aim of completing the study in 2023. Resolution 248 (WRC-19) considers the conditions for transmission of candidate bands and satellites and terminals for narrowband mobile satellite, and all contributions should satisfy narrowband mobile satellite system characteristics parameters within these conditions. However, among the current transmission specifications, there are several views on the exact definition of satellite e.i.r.p., and the derivation schedule of characteristic system parameters for the study is slower than that of the original work schedule. The goal of this paper is to examine the outline of WRC-23 AI 1.18 and the main content of Resolution 284 (WRC-19) and to determine the status of studies related to WRC-23 AI 1.18. The ITU-R's study on this agenda includes updating work schedules, developing the draft required spectrum and system characteristics parameter reports/recommendations, developing draft CPM reports, and examining the various views of transmission specifications in Resolution 284 (WRC-19). Focusing on candidate bands in Region 1 (Europe and Africa) and Region 2 (America), the current status of use in Korea is investigated and future countermeasures in Korea are investigated. In addition, we would like to examine the trend of narrowband mobile satellite through satellite frequency and service status and planning of satellite IoT operators, such as EchoStar, Omnispace, and Sateliot that are participating in the ITU-R study.

Development of Mobile 3D Terrain Viewer with Texture Mapping of Satellite Images

  • Kim, Seung-Yub;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.351-356
    • /
    • 2006
  • Based on current practical needs for geo-spatial information on mobile platform, the main theme of this study is a design and implementation of dynamic 3D terrain rendering system using spaceborne imagery, as a kind of texture image for photo-realistic 3D scene generation on mobile environment. Image processing and 3D graphic techniques and algorithms, such as TIN-based vertex generation with regular spacing elevation data for generating 3D terrain surface, image tiling and image-vertex texturing in order to resolve limited resource of mobile devices, were applied and implemented by using graphic pipeline of OpenGL|ES (Embedded System) API. Through this implementation and its tested results with actual data sets of DEM and satellite imagery, we demonstrated the realizable possibility and adaptation of complex typed and large sized 3D geo-spatial information in mobile devices. This prototype system can be used to mobile 3D applications with DEM and satellite imagery in near future.

Feasibility of Coexistence of Mobile-Satellite Service and Mobile Service in Cofrequency Bands

  • Park, Jong-Min;Ahn, Do-Seob;Lee, Ho-Jin;Park, Dong-Chul
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.255-264
    • /
    • 2010
  • Interference scenarios and methodologies between a terrestrial mobile service (MS) system and mobile-satellite service (MSS) system in a co-channel environment are established. Taking into account a practical deployment situation for both systems, we perform computational simulation of interference in terms of carrier-to-interference ratio (C/I) and interference-to-noise ratio (I/N) to evaluate the cofrequency interference from an MS system into an MSS system, and from an MSS system into an MS system, respectively. The methodology and results can be used as a guide when planning the deployment of MSS and MS systems with no unacceptable interference impact between them.

Analysis on Satellite Uplink Interference for Satellite/Terrestrial Integrated System (위성/지상 겸용망에서 위성 업링크 간섭 분석)

  • Kang, Kunseok;Hong, Tae Chul;Kim, Hee Wook;Ku, Bon-Jun;Chang, Dae-Ig
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.107-114
    • /
    • 2014
  • The satellite 2.1 GHz frequency bands, 1980-2010 MHz and 2170-2200MHz are allocated for mobile satellite service including satellite IMT, while it does not preclude the use of these bands for mobile services. The concept of an integrated satellite/terrestrial network has been introduced in worldwide because the terrestrial use in these bands adjacent to existing terrestrial IMT bands is attractive to provide mobile broadband services. The integrated satellite/terrestrial infrastructure with a high degree of spectrum utilization efficiency has the ability to provide both multimedia broadband services and public protection and disaster relief solutions. In addition, it is required to consider interference issues between the terrestrial and satellite components in order to reuse the same frequency band to both satellite and terrestrial component. This paper analyzes the interference for satellite uplink in the satellite/terrestrial integrated system and the interference reduction scheme for satellite uplink interfered by terrestrial user equipment.

An Interleaved SM-MIMO Scheme for Integrated Mobile Satellite Systems (위성/지상 통합 이동통신시스템을 위한 인터리빙 SM-MIMO 기법)

  • Jin, Xiangguang;Kim, Sooyoung;Hong, Tae Chul;Ku, Bon-Jun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.25-31
    • /
    • 2013
  • In this paper, a new interleaving method for spatially-multiplexed multi-input-multi-output (SM-MIMO) scheme in an integrated mobile satellite and terrestrial system is proposed. In the proposed scheme, the transmitted bits for satellite path are interleaved in an innovative way to make sure that bits multiplied with different channel gains will be located alternatively in one received codeword after demapping, in order to compensate the performance degradation due to high-correlation of the satellite path. In addition, the interleaver can be implemented in a computationally efficient way and with the minimum time delay.

Cooperative Transmission Scheme for Mobile Satellite Broadcasting Systems (이동 위성 방송 시스템을 위한 협력적 전송 기법 연구)

  • Ahn, Do-Seob;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.890-899
    • /
    • 2009
  • One of major services for the next generation mobile satellite system will be multimedia broadcasting and multi-casting service(MBMS). An integrated satellite and terrestrial network can be considered to provide those services seamlessly and cooperatively. This paper presents efficient cooperative transmission architectures for integrated satellite and terrestrial network. First, an integrated satellite and terrestrial system architectures is introduced, and several cooperative transmission architectures for the integrated system are derived. Extensive performance simulation results reveal that the proposed architectures can improve the system performance and make an efficient transmission.

DESIGN AND IMPLEMENTATION OF 3D TERRAIN RENDERING SYSTEM ON MOBILE ENVIRONMENT USING HIGH RESOLUTION SATELLITE IMAGERY

  • Kim, Seung-Yub;Lee, Ki-Won
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.417-420
    • /
    • 2006
  • In these days, mobile application dealing with information contents on mobile or handheld devices such as mobile communicator, PDA or WAP device face the most important industrial needs. The motivation of this study is the design and implementation of mobile application using high resolution satellite imagery, large-sized image data set. Although major advantages of mobile devices are portability and mobility to users, limited system resources such as small-sized memory, slow CPU, low power and small screen size are the main obstacles to developers who should handle a large volume of geo-based 3D model. Related to this, the previous works have been concentrated on GIS-based location awareness services on mobile; however, the mobile 3D terrain model, which aims at this study, with the source data of DEM (Digital Elevation Model) and high resolution satellite imagery is not considered yet, in the other mobile systems. The main functions of 3D graphic processing or pixel pipeline in this prototype are implemented with OpenGL|ES (Embedded System) standard API (Application Programming Interface) released by Khronos group. In the developing stage, experiments to investigate optimal operation environment and good performance are carried out: TIN-based vertex generation with regular elevation data, image tiling, and image-vertex texturing, text processing of Unicode type and ASCII type.

  • PDF