In this paper, we designed, implemented, and verified the SLAM system that can be used on mobile devices. Mobile SLAM is composed of a stand-alone type that directly performs SLAM operation on a mobile device, and a mapping server type that additionally configures a mapping server based on FastAPI to perform SLAM operation on the server and transmits data for map visualization to a mobile device. The mobile SLAM system proposed in this paper is to mix the two types in order to make SLAM operation and map generation more efficient. The stand-alone type SLAM system was configured as an Android app by porting the OpenVSLAM library to the Unity engine, and the map generation and performance were evaluated on desktop PCs and mobile devices. The mobile SLAM system in this paper is an open source project, so it is expected to help develop AR contents based on SLAM in a mobile environment.
The SLAM market is growing rapidly with advances in Machine Learning, Drones, Augmented Reality technologies. However, due to the absence of an open source-based SLAM library for developing AR content, most SLAM researchers are required to conduct their own research and development to customize SLAM. In this paper, we propose an opensource-based Mobile Markerless AR System by building our own pipeline based on Visual SLAM. To implement the Mobile AR System of this paper, it uses ORB-SLAM3 and Unity Engine and We experimented with running our system in a real environment and confirming it in the Unity Engine's Mobile Viewer. Through this experimentation, we can verify that the Unity Engine and the SLAM System are tightly integrated and communicate smoothly. Also, we expect to accelerate the growth of SLAM technology through this research.
In this paper, we propose a modified ORB-SLAM (Oriented FAST and Rotated BRIEF Simultaneous Localization And Mapping) for precise indoor navigation of a mobile robot. The exact posture and position estimation by the ORB-SLAM is not possible all the times for the indoor navigation of a mobile robot when there are not enough features in the environment. To overcome this shortcoming, additional IMU (Inertial Measurement Unit) and encoder sensors were installed and utilized to calibrate the ORB-SLAM. By fusing the global information acquired by the SLAM and the dynamic local location information of the IMU and the encoder sensors, the mobile robot can be obtained the precise navigation information in the indoor environment with few feature points. The superiority of the modified ORB-SLAM was verified to compared with the conventional algorithm by the real experiments of a mobile robot navigation in a corridor environment.
International Journal of Control, Automation, and Systems
/
제5권5호
/
pp.577-583
/
2007
Simultaneous Localization and Mapping (SLAM) is the process of building a map of an unknown environment and simultaneously localizing a robot relative to this map. SLAM is very important for the indoor navigation of a mobile robot and much research has been conducted on this subject. Although feature-based SLAM using an Extended Kalman Filter (EKF) is widely used, it has shortcomings in that the computational complexity grows in proportion to the square of the number of features. This prohibits EKF-SLAM from operating in real time and makes it unfeasible in large environments where many features exist. This paper presents an algorithm which reduces the computational complexity of EKF-SLAM by using topological information (TI) extracted through a thinning process. The global map can be divided into local areas using the nodes of a thinning-based topological map. SLAM is then performed in local instead of global areas. Experimental results for various environments show that the performance and efficiency of the proposed EKF-SLAM/TI scheme are excellent.
This paper proposes a robust method for mapping of a caterpillar-type mobile robot which inherently has uncertainty in its modeling by compensating for the estimated pose error of the robot. In general, a caterpillar type robot is difficult to model, which results in inaccuracy in Simultaneous Localization And Mapping(SLAM). To enhance the robustness of the SLAM for a caterpillar-type mobile robot, we factorize the SLAM posterior, where we used particle filter to estimate the position of the robot and Extended Kalman Filter(EKF) to map the environment. The simulation results show the effectiveness and robustness of the proposed method for mapping.
전자나침반(DMC)은 실내의 전자기적 요소나 강한 자성체 건물구조에서는 쉽게 방해를 받던 나침반보다 실내에서 간섭에 강한 특징을 가지고 있다. 그리고 초음파 센서는 물체와의 거리를 계산해 줄뿐만 아니라 값싼 센서로서 경제적인 이점을 가지고 있어 Simultaneous Localization and Mapping(SLAM)에서 많이 사용하고 있다. 본 논문에서는 자율 이동 로봇의 구동에서 전자나침반과 초음파 센서를 이용한 SLAM의 구현에 대해 연구하였다. 로봇의 특성상 한정된 센싱 데이터만으로 방향과 위치를 파악하고 그 데이터 값으로 가능한 빠르게 위치 측정을 하여야 한다. 그러므로 자율 이동 로봇에서의 SLAM 적용함으로 위치측정의 구현과 지도 작성을 수행한다. 그리고 SLAM 구현상의 주된 연구 중의 하나인 Kid Napping 문제에 중점을 두고 연구한다. 특히, 위치 측정의 구현을 수행하기 위한 데이터의 센싱 방법으로 초음파 센서를 사용하였고 비슷한 위치의 데이터 값이 주어지거나 사전 정보 없는 상태에서는 로봇의 상태를 파악하기 위해서 전자 나침반을 사용하였다. 그래서 자율 이동 로봇의 위치를 정확하게 측정하기 위해서 활용하였다.
In this paper, we proposed a software framework structure to apply ORB-SLAM, the most representative of SLAM algorithms, so that map creation and location estimation technology can be applied through tethered AR glasses. Since tethered AR glasses perform only the role of an input/output device, the processing of camera and sensor data and the generation of images to be displayed through the optical display module must be performed through the host. At this time, an Android-based mobile device is adopted as the host. Therefore, the major libraries required for the implementation of AR contents for AR glasses were hierarchically organized, and spatial recognition and location estimation functions using SLAM were verified.
This paper presents the results of a study for robust self-localization and indoor slam using external cameras (such as a CCTV) and odometry of mobile robot. First, a position of mobile robot was estimated by using maker and odometry. This data was then fused with camera data and odometry data using an extended kalman filter. Finally, indoor slam was realized by applying the proposed method. This was demonstrated in the actual experiment.
이동로봇의 동시 위치인식 및 지도작성 (Simultaneous Localization And Mapping, SLAM) 에서 가장 기본이 되는 알고리즘은 확장 칼만 필터 SLAM(Extended Kalman Filter SLAM, EKF-SLAM)이다. 하지만 칼만 필터를 사용할 때, 시스템 설계자는 외부 입력에 대한 시스템적 특성과 외부 노이즈의 확률적 모델을 알고 있어야 하나, 실제 환경에서는 이를 정확히 파악할 수 없는 한계가 있다. 이에, 칼만 필터를 불확실성이 심한 실제 환경에 적용할 경우 내부 변수의 변화에 민감하게 반응하거나, 필터의 수학적 일관성이 지켜지지 않거나 또는 부정확한 상태 변수값을 추정하기도 한다. 이에 비해 $H_{\infty}$ 필터는 외부 모델에 대한 상세한 정보가 없을지라도 강인하게 상태를 예측할 수 있다는 장점을 가지고 있다. 본 논문에서는 이러한 $H_{\infty}$ 필터의 특성이 이용로봇의 SLAM 알고리즘의 성능 향상에 도움이 될 것이라는 아이디어에 착안하여 $H_{\infty}$ 필터에 가번한 SLAM 알고리즘을 제안하고 이를 모의 실험에 적용해 보았다. 이를 통해 불확실성이 큰 환경에서는 제안된 알고리즘이 기존의 EKF-SLAM에 비해 다소 우수한 예측 성능을 보임을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.