• Title/Summary/Keyword: Mobile Proxy

Search Result 274, Processing Time 0.025 seconds

Hash Chain based Time-Stamping Proxy Signature Scheme for NFC Mobile Payment Environment (NFC 모바일 결제 환경을 위한 Hash Chain기반의 Time-Stamping Proxy 서명 기술)

  • Park, Sung-Wook;Lee, Im-Yeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.710-713
    • /
    • 2012
  • 최근 스마트 기기는 결제, 할인쿠폰 등 각종 기능을 제공하는 수단으로 진화되면서 통신과 금융이 융합된 모바일 NFC 서비스의 시장이 급성장할 것으로 전망되고 있다. 특히 모바일 NFC 결제 서비스 시장의 활성화가 예상됨에 따라 모바일 NFC 결제 서비스는 국내 외적으로 널리 주목받고 있다. 하지만 이를 주도할 수 있는 보안 관련 기술력이 부족한 상태이며 NFC 모바일 결제 환경에서 적용이 가능한 NFC 결제 관련 기술 연구도 미흡한 실정이다. 이에 따라 기존 방식과는 전혀 다른 결제 환경과 결제 방식에 의해 도출될 수 있는 다양한 응용서비스에 대한 새로운 법 제도의 정비와 새로운 결제환경에 맞는 보안기술이 필요할 것으로 예상된다. 본 논문에서는 기존의 물리적인 플라스틱 신용카드의 권한 위임 문제와 NFC 모바일 신용카드를 비교하여 NFC 모바일 기반 결제 서비스 상에서의 위협을 분석하고 NFC 결제환경에서 안전한 결제 권한 위임이 가능한 Hash Chain기반의 Time-Stamping Proxy 서명 기술을 제안하였다.

Handover Latency Improvement & Performance Analysis over Inter-LMA (Inter-LMA 이동시 Handover Latency 개선 방안 및 성능 분석)

  • Chang, Jae-Cheol;Park, Byung-Joo;Kim, Dae-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.8
    • /
    • pp.34-42
    • /
    • 2009
  • Mobile communication traffic is changing from voice to data/internet, e.g. wireless internet access, SMS/MMS. more and more. Therefore many data services are coming out over 3G, Mobile WiMAX(WIBRO), LTE etc. Wireless internet market is growing and MIPv6 is more important and many protocols being studied and developed from MIPv6 to Fast MIPv6, Hierachical MIPv6, Proxy MIPv6, etc. The significant factor over MIPv6 is Hand-over latency and Packet-loss PMIPv6 is efficient for reducing mobility related messages and hand-over latency, but it considers single LMA domain. If mobile node is moving inter-LMAs, hand-over delay time affects the real-time communications. To overcome this hand-over delay, we propose present and new enhanced schemes and analize the performance and show the results.

u-Healthcare Context Information System Using Mobile Proxy Based on Distributed Object Group Framework (DOGF 기반의 모바일 프락시를 이용한 u-헬스케어 상황정보 시스템)

  • Jeong, Chang-Won;Ahn, Dong-In;Kang, Min-Gyu;Joo, Su-Chong
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.411-420
    • /
    • 2008
  • This paper implemented the u-Healthcare Context Information System (HCIS) supporting ubiquitous healthcare by using location, health and titrating environment information collected from sensors/devices equipped in home for healthcare home service. The HCIS is based on the Distributed Object Group Framework (DOGF), a management model which can customize distributed resources, and manages various context information, applications and devices as a group in healthcare home environment, as one more logical units. Also, this system provides continuous healthcare multimedia service considering a resident's location using Mobile Proxy, and the healthcare context information through Context Provider to a resident in home. For verifying execution of our system, we implemented the seamless multimedia service based on resident's location and the prescription/advice and schedule notification/alarm service as healthcare applications in home. And we showed the executing results of healthcare home service by using service device existed in the residential space on which the resident is located according to the healthcare scenario.

A Network-based IPv6 Handover Scheme for Improving Multimedia Transmission Service in IEEE 802.11 Networks (IEEE 802.11 네트워크에서 멀티미디어 전송 서비스 향상을 위한 네트워크 기반 IPv6 핸드오버 기법)

  • Park, Byung-Joo;Kim, Bong-Ki;Han, Youn-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.6B
    • /
    • pp.420-429
    • /
    • 2008
  • Currently, IEEE 802.11 Network could not support optimized tunneling scheme and buffering scheme based on movement detection to reduce multimedia data packet loss when an MN move from current subnet to new subnet during handover. It is because IEEE 802.11 did not transfer information of movement detection to AP. In this paper, we proposed new fast handover scheme by using advanced access point and optimized snoop protocol for network based Proxy Mobile IPv6 in IEEE 802.11 Networks. During handover, the proposed scheme reduces both the multimedia data packet loss rate and the packet reordering problems without changing MN's mobility stack in IEEE 802.11 Networks.

A Study for Performance Evaluation of Distributed Mobility Management based on Proxy Mobile IPv6 (PMIPv6기반의 분산 이동성 관리 방식의 성능 평가에 관한 연구)

  • Wie, Sunghong;Jang, Jaeshin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.97-105
    • /
    • 2015
  • Recently, due to an explosive growth of the internet traffic, the limitations of a current framework for a mobility management have been focused. The current centralized mobility management is prone to several problems and limitations: suboptimal routing, low scalability, signaling overhead, and a single point of failure. To overcome these problems and limitations, IETF is working about the distributed mobility management scheme that the centralized mobility functions of HA(Home Agents) are distributed to networks edges such as access routers. These distributions of mobility functions overcome the limitations of the centralized mobility managements and go with the trend of flat networks e.g. more simple network architecture. This paper analyzes the distributed mobility management based on Proxy Mobile IPv6 and demonstrates the performance superiority.

Inter-Domain Mobility Management Based on the Proxy Mobile IP in Mobile Networks

  • Gohar, Moneeb;Koh, Seok-Joo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.196-213
    • /
    • 2016
  • System Architecture Evolution (SAE) with Long Term Evolution (LTE) has been used as the key technology for the next generation mobile networks. To support mobility in the LTE/SAE-based mobile networks, the Proxy Mobile IPv6 (PMIP), in which the Mobile Access Gateway (MAG) of the PMIP is deployed at the Serving Gateway (S-GW) of LTE/SAE and the Local Mobility Anchor (LMA) of PMIP is employed at the PDN Gateway (P-GW) of LTE/SAE, is being considered. In the meantime, the Host Identity Protocol (HIP) and the Locator Identifier Separation Protocol (LISP) have recently been proposed with the identifier-locator separation principle, and they can be used for mobility management over the global-scale networks. In this paper, we discuss how to provide the inter-domain mobility management over PMIP-based LTE/SAE networks by investigating three possible scenarios: mobile IP with PMIP (denoted by MIP-PMIP-LTE/SAE), HIP with PMIP (denoted by HIP-PMIP-LTE/SAE), and LISP with PMIP (denoted by LISP-PMIP-LTE/SAE). For performance analysis of the candidate inter-domain mobility management schemes, we analyzed the traffic overhead at a central agent and the total transmission delay required for control and data packet delivery. From the numerical results, we can see that HIP-PMIP-LTE/SAE and LISP-PMIP-LTE/SAE are preferred to MIP-PMIP-LTE/SAE in terms of traffic overhead; whereas, LISP-PMIP-LTE/SAE is preferred to HIP-PMIP-LTE/SAE and MIP-PMIP-LTE/SAE in the viewpoint of total transmission delay.

Mobile Contents Adaptation Network using Active Network Mechanisms (액티브 네트워크 메커니즘을 이용한 이동 컨텐츠 적응형 네트워크)

  • 김기조;이준호;임경식;오승희;남택용;손승원
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.4
    • /
    • pp.384-392
    • /
    • 2004
  • Mobile contents service providers have some difficulties to timely and proper service deployment due to rapid development cycle of diverse portable devices with different capabilities. A way to resolve the problem is to introduce a mobile contents service paltform that can adapt original mobile contents to diverse devices dynamically and automatically. In this paper, we propose a mobile contents service platform based on active network mechanisms, called Mobile Content Adaptation Network(MobiCAN). The MobiCAN node provides effective service deployment, execution, and maintenance features and accommodates service layering and service customization capabilities for easy deployment. The basic functional units of the MobiCAN node are micro services with well-defined service interfaces and service layering features. For reliable services among the MobiCAN nodes, we design new distributed and robust Overlay Management Protocols(OMPs). As an example of practical MobiCAN applications, we finally describe Dynamic Contents Customization Proxy(DCCP) service.

Performance Analysis of A Novel Inter-Networking Architecture for Cost-Effective Mobility Management Support (비용효과적인 이동성 관리 지원을 위한 새로운 인터네트워킹 아키텍쳐의 성능분석)

  • Song, MyoungSeok;Jeong, Jongpil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.5
    • /
    • pp.181-190
    • /
    • 2013
  • PMIPv6(Proxy Mobile IPv6) is a network-based IP mobility management protocol, which can control the mobility without depending on the type of access system or the capability of mobile node. Combining it with SIP mobility, it can establish the route optimization effectively and ensure the terminal mobility and the session mobility. There are many literatures on PMIPv6-SIP in mobility management, but efficient performance analysis and mathematical modeling has not been standardized. For this, a new PMIPv6-SIP architecture is proposed to compare with Pure-SIP in terms of the handover delay and packet loss.

Mobility Support Architecture in Locator-ID Separation based Future Internet using Proxy Mobile IPv6

  • Seok, Seung-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.209-217
    • /
    • 2014
  • Of several approaches for future Internet, separating two properties of IP address into locator and identifier, is being considered as a highly likely solution. IETF's LISP (Locator ID Separation Protocol) is proposed for this architecture. In particular, the LISP model easily allows for device mobility through simple update of information at MS (Mapping Server) without a separate protocol. In recent years, some of the models supporting device mobility using such LISP attributes have emerged; however, most of them have the limitation for seamless mobility support due to the frequent MS information updates and the time required for the updates. In this paper, PMIPv6 (Proxy Mobile IPv6) model is applied for mobility support in LISP model. PMIPv6 is a method that can support mobility based on network without the help of device; thus, this we define anew the behavior of functional modules (LMA, MAG and MS) to fit this model to the LISP environment and present specifically procedures of device registration, data transfer, route optimization and handover. In addition, our approach improves the communication performance using three tunnels identified with locators between mobile node and corresponding node and using a route optimized tunnel between MN's MAG and CN's MAG. Finally, it allows for seamless mobility by designing a sophisticated handover procedure.

An Enhanced Handoff Support Based on Network-based Mobility Management Protocol (향상된 핸드오프를 지원하는 망 기반의 이동성 지원 방안)

  • Lee, Sung-Kuen;Jeon, You-Chan;Lim, Tae-Hyong;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, we propose an enhanced handoff support scheme based on network-based mobility management protocol, Proxy Mobile IPv6 (PMIPv6), which is actively standardized by the IETF NETLMM working group. By utilizing the dynamic virtual hierarchy network architecture between mobile access gateways (MAGs), the proposed scheme can support network scalability and reliability to wireless access network. In addition, we propose pre-authentication process based on the policy store (PS) to support a fast and seamless handoff. We evaluate the performance of the proposed scheme in terms of handoff delay and end-to-end delay thru computer simulation. Thru, various computer simulation results, we verified the superior performance of the proposed scheme by comparing with the results of other schemes.