• Title/Summary/Keyword: Mobile Authentication

Search Result 773, Processing Time 0.028 seconds

Secure Handoff Based on Dual Session Keys in Mobile IP with AAA (Mobile IP 및 AAA 프로토콜 기반으로 신속성과 안전성을 고려한 듀얼세션키 핸드오프 방식연구c)

  • Choi Yumi;Lee Hyung-Min;Choo Hyunseung
    • Journal of Internet Computing and Services
    • /
    • v.6 no.3
    • /
    • pp.107-119
    • /
    • 2005
  • The Mobile IP has evolved from providing mobility support for portable computers to support wireless handheld devices with high mobility patterns. The Mobile IP secures mobility, but does not guarantee security, In this paper, the Mobile IP has been adapted to allow AM protocol that supports authentication, authorization and accounting for authentication and collection of accounting information of network usage by mobile nodes, For this goal, we propose a new security handoff mechanism to intensify the Mobile IP security and to achieve fast handoff. In the proposed mechanism, we provide enough handoff achievement time to maintain the security of mobile nodes, According to the analysis of modeling result, the proposed mechanism composed the basic Mobile IP along with AM protocol is up to about $60\%$ better in terms of normalized surcharge for the handoff failure rate that considers handoff time.

  • PDF

An Efficient Multi-Layer Encryption Framework with Authentication for EHR in Mobile Crowd Computing

  • kumar, Rethina;Ganapathy, Gopinath;Kang, GeonUk
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.204-210
    • /
    • 2019
  • Mobile Crowd Computing is one of the most efficient and effective way to collect the Electronic health records and they are very intelligent in processing them. Mobile Crowd Computing can handle, analyze and process the huge volumes of Electronic Health Records (EHR) from the high-performance Cloud Environment. Electronic Health Records are very sensitive, so they need to be secured, authenticated and processed efficiently. However, security, privacy and authentication of Electronic health records(EHR) and Patient health records(PHR) in the Mobile Crowd Computing Environment have become a critical issue that restricts many healthcare services from using Crowd Computing services .Our proposed Efficient Multi-layer Encryption Framework(MLEF) applies a set of multiple security Algorithms to provide access control over integrity, confidentiality, privacy and authentication with cost efficient to the Electronic health records(HER)and Patient health records(PHR). Our system provides the efficient way to create an environment that is capable of capturing, storing, searching, sharing, analyzing and authenticating electronic healthcare records efficiently to provide right intervention to the right patient at the right time in the Mobile Crowd Computing Environment.

Efficient mutual authentication and key distribution protocol for cdma2000 packet data service (cdma2000 패킷 데이터 서비스를 위한 효율적인 상호 인증과 키 분배 프로토콜)

  • 신상욱;류희수
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2002.11a
    • /
    • pp.59-63
    • /
    • 2002
  • 본 논문에서는 DIA.METER AAA(Authentication, Authorization and Accounting) 하부 구조를 가지고 Mobile IP 액세스 기법을 사용하는 cdma2000 패킷 데이터 서비스에서 MN(mobile node)와 AAAH(home AAA server)간의 상호 인증과 Mobile IP 개체들간에 안전한 세션키 분배를 위한 방법을 제안한다. 제안된 프로토콜은 DIAMETER AAA 하부 구조론 가정하며 DIAMETER AAA의 비효율성을 개선하고, 인증과 키 분배 프로토콜의 시큐리티 요구 사항들을 모두 만족한다.

  • PDF

A Secure Data Processing Using ID-Based Key Cryptography in Mobile Cloud Computing (모바일 클라우드 컴퓨팅 환경에서 ID-기반 키 암호화를 이용한 안전한 데이터 처리 기술)

  • Cheon, EunHong;Lee, YonSik
    • Convergence Security Journal
    • /
    • v.15 no.5
    • /
    • pp.3-8
    • /
    • 2015
  • Most mobile cloud computing system use public key cryptography to provide data security and mutual authentication. A variant of traditional public key technologies called Identity-Based Cryptography(IBC) has recently received considerable attention. The certificate-free approach of IBC may well match the dynamic qualities of cloud environment. But, there is a need for a lightweight secure framework that provides security with minimum processing overhead on mobile devices. In this paper, we propose to use hierarchical ID-Based Encryption in mobile cloud computing. It is suitable for a mobile network since it can reduce the workload of root Public Key Generators by delegating the privilege of user authentication and private key generation. The Identity-Based Encryption and Identity-Based Signature are also proposed and an ID-Based Authentication scheme is presented to secure data processing. The proposed scheme is designed by one-way hash functions and XOR operations, thus has low computation costs for mobile users.

Performance Evaluation of Authentication Protocol for Mobile RFID Privacy (모바일 RFID 프라이버시를 위한 인증 프로토콜 성능 평가)

  • Eom, Tae-Yang;Yi, Jeong-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.618-630
    • /
    • 2011
  • Mobile RFID system, that consists of the existing RFID reader mounted on the mobile devices such as smartphones, is able to provide the users a variety of services and convenience. Although the users can get the information about a certain product anytime anywhere, there is high probability that their privacy may be violated because their belongings with RFID tags can be scanned by other mobile readers at any time. Several RFID authentication schemes have been proposed to deal with these privacy issues. However, since the existing solutions require heavy computation on the tag side, most of them is not applicable to the general low-cost passive tags which do not have any processing unit. In this paper, we propose the efficient authentication scheme for mobile RFID system applicable to the passive tags as well as the active ones by the best use of computing capability of mobile devices. The proposed scheme satisfies the import security issues such as tag protection, untraceability, anti-traffic analysis. We also implement the proposed scheme on top of real smartphone for feasibility and show the experimental results from it.

Authentication and Key Agreement Protocol based on NTRU in the Mobile Communication (NTRU기반의 이동 통신에서의 인증 및 키 합의 프로토콜)

  • 박현미;강상승;최영근;김순자
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2002
  • As the electronic commerce increases rapidly in the mobile communication, security issues become more important. A suitable authentication and key agreement for the mobile communication environment is a essential condition. Some protocols based on the public key cryptosystem such as Diffie-Hellman, EIGamal etc. were adapted in the mobile communication. But these protocols that are based on the difficult mathematical problem in the algebra, are so slow and have long key-length. Therefore, these have many limitation to apply to the mobile communication. In this paper, we propose an authentication and key agreement protocol based on NTRU to overcome the restriction of the mobile communication environment such as limited sources. low computational fewer, and narrow bandwidth. The proposed protocol is faster than other protocols based on ECC, because of addition and shift operation with small numbers in the truncated polynomial ring. And it is as secure as other existent mathematical problem because it is based on finding the Shortest or Closest Vector Problem(SVP/CVP).

Reduction of Authentication Cost Based on Key Caching for Inter-MME Handover Support (MME 도메인간 핸드오버 지원을 위한 키캐싱 기반 인증비용의 감소기법)

  • Hwang, Hakseon;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.209-220
    • /
    • 2013
  • Handover is the technology to minimize data lose of mobile devices and make continuous communication possible even if the device could be moved from one digital cell site to another one. That is, it is a function that enables the mobile user to avoid the disconnection of phone conversations when moving from a specific mobile communication area to another. Today, there are a lot of ongoing researches for fast and efficient hand-over, in order to address phone call's delay and disconnection which are believed to be the mobile network's biggest problems, and these should essentially be resolved in all mobile networks. Thanks to recent technology development in mobile network, the LTE network has been commercialized today and it has finally opened a new era that makes it possible for mobile phones to process data at high speed. In LTE network environment, however, a new authentication key must be generated for the hand-over. In this case, there can be a problem that the authentication process conducted by the hand-over incurs its authentication cost and delay time. This essay suggests an efficient key caching hand-over method which simplifies the authentication process: when UE makes hand-over from oMME to nMME, the oMME keeps the authentication key for a period of time, and if it returns to the previous MME within the key's lifetime, the saved key can be re-used.

Loaming Agreement based Localized Authentication for Nested NEMO Environment (로밍 동의에 기반한 중첩 NEMO 환경을 위한 지역 인증 기법에 관한 연구)

  • Lim, Hyung-Jin;Chung, Tai-Myoung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.2
    • /
    • pp.61-68
    • /
    • 2008
  • Authentication for inter-NEMO rooming is on important issue for achieving the seamless mobile networking. In this proposal, the technical challenge lies in the fact that a visited network does not initially have the authentication credentials of a roaming mobile router. This paper proposes an efficient approach for providing AAA service in NEMO environment. This approach uses localized authentication based on the roaming agreement between ISPs. A public key certificate structure is proposed, tailored to the business model of wireless internet Service Providers (ISPs). In this approach, the mutual authentication between a visited network and a roaming user can be performed locally without any control with user's home network. In conclusion, our protocol shown that communication delay can be reduced by overuse 45% overhead in communication delay than the previous AAA approach.

  • PDF

Mobile Malicious AP Detection and Cut-off Mechanism based in Authentication Network (인증 네트워크 상의 비 인가된 모바일 AP 탐지 및 차단 기법)

  • Lim, Jae-Wan;Jang, Jong-Deok;Yoon, Chang-Pyo;Ryu, Hwang-Bin
    • Convergence Security Journal
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 2012
  • Owing to the development of wireless infrastructure and mobile communication technology, There is growing interest in smart phone using it. The resulting popularity of smart phone has increased the Mobile Malicious AP-related security threat and the access to the wireless AP(Access Point) using Wi-Fi. mobile AP mechanism is the use of a mobile device with Internet access such as 3G cellular service to serve as an Internet gateway or access point for other devices. Within the enterprise, the use of mobile AP mechanism made corporate information management difficult owing to use wireless system that is impossible to wire packet monitoring. In this thesis, we propose mobile AP mechanism-based mobile malicious AP detection and prevention mechanism in radius authentication server network. Detection approach detects mobile AP mechanism-based mobile malicious AP by sniffing the beacon frame and analyzing the difference between an authorized AP and a mobile AP mechanism-based mobile malicious AP detection.

A Method of Anonymity Authentication using the Public Certificate (공인인증서를 이용한 익명인증 방법)

  • Lee, Young Gyo;Ahn, Jeong Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.1
    • /
    • pp.115-129
    • /
    • 2010
  • As the fixed mobile communication tools using the internet are developed, the off-line services are serviced through on-line on the internet. our society is divided into the real world and the cyber world. In the cyber world, the authentication to the user is absolutely required. The authentication is divided into the real-name authentication and the anonymous authentication by the kind of the internet service provider. There are some ISPs needed the real-name authentication and there are others ISPs needed the anonymity authentication. The research about the anonymity authentication is steadily established to these days. In this paper, we analyze the problem about blind signature, group signature, ring signature, and traceable signature. And we propose a method of anonymity authentication using the public certificate. In the proposal, the anonymity certificate have the new structure and management. Certificate Authority issues several anonymity certificates to a user through the real-name authentication. Several anonymity certificates give non-linked and non-traceability to the attacker.