• Title/Summary/Keyword: Mo-doping

Search Result 136, Processing Time 0.025 seconds

Local Oxidation Characteristics on Implanted 4H-SiC by Atomic Force Microscopy (원자힘 현미경을 이용한 이온 주입된 4H-SiC 상의 국소 산화 특성)

  • Lee, Jung-Ho;Ahn, Jung-Joon;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.294-297
    • /
    • 2012
  • In this work, local oxidation behavior in phosphorous ion-implanted 4H-SiC has been investigated by using atomic force microscopy (AFM). The AFM-local oxidation (AFM-LO) has been performed on the implanted samples, with and without activation anneal, using an applied bias (~25 V). It has been clearly shown that the post-implantation annealing process at $1,650^{\circ}C$ has a great impact on the local oxidation rate by electrically activating the dopants and by modulating the surface roughness. In addition, the composition of resulting oxides changes depending on the doping level of SiC surfaces.

결함 제어를 통한 금속산화물 소재의 전기화학 특성 제어

  • Jeong, Hyeong-Mo;Sin, Won-Ho
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • Metal oxide based materials have been widely used to fields of electrochemical applications. Recently, various type of defects from microstructures of metal oxides and their nanocomposites have been raised as the important material design factors for realizing highly improved electrochemical properties. Previous experimental and theoretical works have suggested that controlling the reaction activity and kinetics of the key electrochemical reactions by activated interfaces originating from the defect sites can play an important role in achieving the robust energy storage and conversion. Therefore, this paper focuses on the role of defect-controlled metal oxide materials such as doping, edge-sites, grain boundaries and nano-sized pores for the high performances in energy storage devices and electrocatalysts. The research approaches demonstrated here could offer a possible route to obtain noble ideas for designing the metal oxide materials for the energy storage and conversion applications.

Tandem white organic light emitting diodes comprising of red, green, blue emission

  • Yang, Jung-Jin;Suman, C.K.;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.820-822
    • /
    • 2009
  • Tandem white organic light emitting diodes (WOLEDs) are fabricated by using a transparent interconnecting layer of Al:LiF composite/molybdenum oxides ($MoO_3$). We demonstrate two types of tandem WOLEDs consisting of two color emissions (red and blue emission) and three color emissions (red, green and blue emission). Tandem WOLED consisting of three color emission shows higher external quantum efficiency and current efficiency.

  • PDF

Controlling Electrical Properties in Zinc Oxide Thin Films by Organic Concentration

  • Yun, Gwan-Hyeok;Han, Gyu-Seok;Jeong, Jin-Won;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.209.2-209.2
    • /
    • 2013
  • We proposed and fabricated zinc oxide thin-film transistors (TFTs) employing 4-mercaptophenol (4MP) doped ZnO by atomic layer deposition (ALD) that results in highly stable and high performance. The 4MP concentration in ZnO films were varied from 1.7% to 5.6% by controlling Zn:4MP pulses. The n-type carrier concentrations in ZnO thin films were controlled from $1.017{\times}10^{20}/cm^3$ to $2.903{\times}10^{17}/cm^3$ with appropriate amount of 4MP doping. The 4.8% 4MP doped ZnO TFT revealed good device mobility performance of 8.4 $cm^2/Vs$ and the on/off current ratio of 106. Such 4MP doped ZnO TFTs exhibited relatively good stability (${\Delta}V_{th}$: 2.4 V) under positive bias-temperature stress while the TFTs with only ZnO showed a 4.3 ${\Delta}V_{th}$ shift, respectively.

  • PDF

Characterization of conducting aluminium doped zinc oxide (ZnO:Al) thin films deposited on polymer substrates (폴리머 기판위에 증착된 ZnO:Al 전도막의 특성연구)

  • Koo, Hong-Mo;Kim, Se-Hyun;Park, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.535-538
    • /
    • 2004
  • Zinc Oxide (ZnO) films have attracted considerable attention for transparent conducting films, because of their high conductivity, good optical transmittance from UV to near IR as well as a low-cost fabrication. To increase the conductivity of ZnO, doping of group III elements (Al, Ga, In and B) has been carried out. Transparent conducting films have been applied for optoelectric devices, the development of the transparent conducting thin films on flexible light-weight substrates are required. In this research, the transparent conducting ZnO thin films doped with Aluminum (Al) on polymer substrates were deposited by the RF magnetron suputtering method, and the structural, optical and electrical properties were investigated.

  • PDF

A Study on Optimization of the P-region of 4H-SiC MPS Diode (4H-SiC MPS 다이오드의 P 영역 최적화에 관한 연구)

  • Jung, Se-Woong;Kim, Ki-Hwan;Kim, So-Mang;Park, Sung-Joon;Koo, Sang-Mo
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.181-183
    • /
    • 2016
  • In this work, the merged PiN Schottky(MPS) diodes based silicon carbide(SiC) have been optimized and designed for 1200V diodes by 2D-atlas simulation tool. We investigated the optimized characteristics of SiC MPS diodes such as breakdown voltage and specific on-resistance by varying the doping concentrations of P-Grid/epi-layer and space of P-Grid, which are the most important parameters. The breakdown voltage and specific on-resistance, based on Baliga's Figure Of Merit (BFOM), have been compared with and the SiC-based MPS diodes show improved BFOMs with low values of specific on-resistance and high breakdown voltage. It has been demonstrated 1,200 V SiC MPS diodes will find useful applications in high voltage energy-efficient devices.

Photocatalysis of o-, m- and p-Xylene Using Element-Enhanced Visible-Light Driven Titanium Dioxide

  • Kim, Jong-Tae;Kim, Mo-Keun;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1195-1201
    • /
    • 2008
  • Enhancing with non-metallic elemental nitrogen(N) is one of several methods that have been proposed to modify the electronic properties of bulk titanium dioxide($TiO_2$), in order to make $TiO_2$ effective under visible-light irradiation. Accordingly, current study evaluated the feasibility of applying visible-light-induced $TiO_2$ enhanced with N element to cleanse aromatic compounds, focusing on xylene isomers at indoor air quality(IAQ) levels. The N-enhanced $TiO_2$ was prepared by applying two popular processes, and they were coated by applying two well-known methods. For three o-, m-, and p-xylene, the two coating methods exhibited different photocatalytic oxidation(PCO) efficiencies. Similarly, the two N-doping processes showed different PCO efficiencies. For all three stream flow rates(SFRs), the degradation efficiencies were similar between o-xylene and m,p-xylene. The degradation efficiencies of all target compounds increased as the SFR decreased. The degradation efficiencies determined via a PCO system with N-enhanced visible-light induced $TiO_2$ was somewhat lower than that with ultraviolet(UV)-light induced unmodified $TiO_2$, which was reported by previous studies. Nevertheless, it is noteworthy that PCO efficiencies increased up to 94% for o-xylene and 97% for the m,p-xylene under lower SFR(0.5 L $min^{-1}$). Consequently, it is suggested that with appropriate SFR conditions, the visible-light-assisted photocatalytic systems could also become important tools for improving IAQ.

Two-Dimensional Analysis of the Characteristics at Heterojunction of MODFET Using FDM (유한 차분법을 이용한 MODFET의 이차원적 해석)

  • Jung, Hak-Gi;Lee, Moon-Key;Kim, Bong-Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1373-1379
    • /
    • 1988
  • This paper describes a two-dimensional analysis of the potential distribution and electron concentration of the MODFET at channel using FDM. More exact analysis can be obtained by two-dimensional analysis which considers parasitic effects ignored in one-dimensional analysis. Using Poisson and Shrodinger equations, the potential distribution and the wave function are calculated within a constant error bound. As a result, the relations between the thickness of spacer, doping concentration of (n) AlGaAs layer, and the sheet density of the 2DEG (2 Dimensional Electron Gas) of MODFET at channel are suggested quantitively. The sheet density of the 2DEG is increased as the thickness of the spacer is decreased of the doping concentration of the (n)AlGaAs layer is lowered.

  • PDF

Local oxidation of 4H-SiC using an atomic force microscopy (Atomic Force Microscopy을 이용한 4H-SiC의 Local Oxidation)

  • Jo, Yeong-Deuk;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.79-80
    • /
    • 2009
  • The local oxidation using an atomic force microscopy (AFM) is useful for Si-base fabrication of nanoscale structures and devices. SiC is a wide band-gap material that has advantages such as high-power, high-temperature and high-frequency in applications, and among several SiC poly types, 4H-SiC is the most attractive poly type due to the high electron mobility. However, the AFM local oxidation of 4H-SiC for fabrication is still difficult, mainly due to the physical hardness and chemical inactivity of SiC. In this paper, we investigated the local oxidation of 4H-SiC surface using an AFM. We fabricated oxide patterns using a contact mode AFM with a Pt/Ir-coated Si tip (N-type, $0.01{\sim}0.025\;{\Omega}cm$) at room temperature, and the relative humidity ranged from 40 to 50%. The height of the fabricated oxide pattern ($1{\sim}3\;nm$) on SiC is similar to that of typically obtained on Si ($10^{15}{\sim}10^{17}\;cm^{-3}$). We perform the 2-D simulation to further analyze the electric field between the tip and the surface. Whereas the simulated electric field on Si surface is constant ($5\;{\times}\;10^7\;V/m$), the electric field on SiC surface increases with increasing the doping concentration from ${\sim}10^{15}$ to ${\sim}10^{17}\;cm^{-3}$. We demonstrated that a specific electric field ($4\;{\times}\;10^7\;V/m$) and a doping concentration (${\sim}10^{17}\;cm^{-3}$) is sufficient to switch on/off the growth of the local oxide on SiC.

  • PDF

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • Yun, Gwan-Hyeok;Kalode, Pranav;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF