• 제목/요약/키워드: Mo alloys

검색결과 244건 처리시간 0.03초

스트레처블 배선용 저저항 알루미늄-몰리브데늄 합금에 대한 연구 (A study on the Low Resistance Aluminum-Molybdenum Alloy for stretchable metallization)

  • 이민준;배진원;박수연;최재익;김건호;서종현
    • 한국표면공학회지
    • /
    • 제56권2호
    • /
    • pp.160-168
    • /
    • 2023
  • Recently, investigation on metallization is a key for a stretchable display. Amorphous metal such as Ni and Zr based amorphous metal compounds are introduced for a suitable material with superelastic property under certain stress condition. However, Ni and Zr based amorphous metals have too high resistivity for a display device's interconnectors. In addition, these metals are not suitable for display process chemicals. Therefore, we choose an aluminum based amprhous metal Al-Mo as a interconnector of stretchable display. In this paper, Amorphous Forming Composition Range (AFCR) for Al-Mo alloys are calculated by Midema's model, which is between 0.1 and 0.25 molybdenum, as confirmed by X-ray diffraction (XRD). The elongation tests revealed that amorphous Al-20Mo alloy thin films exhibit superior stretchability compared to pure Al thin films, with significantly less increase in resistivity at a 10% strain. This excellent resistance to hillock formation in the Al20Mo alloy is attributed to the recessed diffusion of aluminum atoms in the amorphous phase, rather than in the crystalline phase, as well as stress distribution and relaxation in the aluminum alloy. Furthermore, according to the AES depth profile analysis, the amorphous Al-Mo alloys are completely compatible with existing etching processes. The alloys exhibit fast etch rates, with a reasonable oxide layer thickness of 10 nm, and there is no diffusion of oxides in the matrix. This compatibility with existing etching processes is an important advantage for the industrial production of stretchable displays.

MICROSTRUCTURE AND ELECTROCHEMICAL BEHAVIORS OF EQUIATOMIC TiMoVCrZr AND Ti-RICH TiMoVCrZr HIGH-ENTROPY ALLOYS FOR METALLIC BIOMATERIALS

  • HOCHEOL SONG;SEONGI LEE;KWANGMIN LEE
    • Archives of Metallurgy and Materials
    • /
    • 제65권4호
    • /
    • pp.1317-1322
    • /
    • 2020
  • The present study investigated various thermodynamic parameters, microstructures and electrochemical behaviors of TiMoVCrZr and Ti-rich TiMoVCrZr high-entropy alloys (HEAs) prepared by vacuum arc remelting. The microstructures of the alloys were analyzed using X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), and potentiodynamic polarization tests. The determined thermodynamic values of the Ω-parameter and the atomic size difference (δ) for the HEAs were determined to be in the range of Ω ≥ 1.1, and δ ≤ 6.6% with valance electron configuration (VEC) ≤ 5.0, suggesting the HEAs were effective at forming solid solutions. XRD patterns of the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed four phases consisting of the body centered cubic1 (BCC1), BCC2, hexagonal close-packed (HCP), and intermetallic compound Cr2Zr phases. Three phases were observed in the XRD patterns of Ti-rich Ti40Mo15V15Cr15Zr15 (BCC, HCP, and Cr2Zr) and a single BCC phase was observed in Ti-rich Ti60Mo10V10Cr10Zr10 HEAs. The backscattered-electron (BSE) images on the equiatomic Ti20Mo20V20Cr20Zr20 HEA revealed BCC and HCP phases with Cr2Zr precipitates, suggesting precipitation from the HCP solid solution during the cooling. The micro-segregation of Ti-rich Ti60Mo10V10C10Zr10 HEAs appeared to decrease remarkably. The alloying elements in the HEAs were locally present and no phase changes occurred even after additional HIP treatment. The lowest current density obtained in the polarization potential test of Ti-rich Ti40Mo15V15Cr15Zr15 HEA was 7.12×10-4 mA/cm2 was obtained. The studied TiMoVCrZr HEAs showed improved corrosion characteristics as compared to currently available joint replacement material such as ASTM F75 alloy.

Fe-(Mo-Mn-P)-xSi계 합금의 성형밀도에 따른 소결거동 (Sintering behavior of Fe-(Mo-Mn-P)-xSi alloys according to the Green Density)

  • 정우영;옥진욱;박동규;안인섭
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.400-405
    • /
    • 2017
  • The addition of a large amount of alloying elements reduces the compactibility and increases the compacting pressure, thereby shortening the life of the compacting die and increasing the process cost of commercial PM steel. In this study, the characteristic changes of Fe-Mo-P, Fe-Mn-P, and Fe-Mo-Mn-P alloys are investigated according to the Si contents to replace the expensive elements, such as Ni. All compacts with different Si contents are fabricated with the same green densities of 7.0 and $7.2g/cm^3$. The transverse rupture strength (TRS) and sintered density are measured using the specimens obtained through the sintering process. The sintered density tends to decrease, whereas the TRS increases as the Si content increases. The TRS of the sintered specimen compacted with $7.2g/cm^3$ is twice as high as that compacted with $7.0g/cm^3$.

질산불용성 합금의 EPMA분석 (A Study of EPMA Analysis for Nitric Acid Insoluble Alloys)

  • 박순달;박용준;김종구;손세철;조기수
    • 분석과학
    • /
    • 제11권6호
    • /
    • pp.485-494
    • /
    • 1998
  • 질산불용성합금의 특성을 갖는 Mo-Ru-Rh-Pd 합금을 만들어 XRD, WDX, EDX, ICP 분석을 하였다. XRD 분석결과 이 합금은 육방밀집(hcp) 구조와 $P6_3/mmc$의 공간군을 갖는 것으로 나타났다. EPMA 분석시 최적 가속전압은 15 kV였으며 Tc을 제외한 Zr~Cd 표준시편의 원자번호와 X-선 세기간의 직선성을 나타내는 R값은 0.998 범위였다. 내삽법에 의한 WDX 분석과 표준시편을 사용한 WDX 분석에서 구한 X-선 계수비를 비교한 결과 Mo, Pd은 표준시편을 사용한 WDX분석에 비해 0.1% 낮게 검출되었고 Ru, Rh은 약 3% 높게 검출되었다. 이 합금은 염산 12.5대 질산 1의 혼합산으로 $220^{\circ}C$, 22시간 용해시켰을 때 완전히 녹았으며 1N-HCl로 100배 희석시 재침전이 없었다. ICP 분석결과는 표준시편을 사용한 WDX분석에 대해 4% 이하의 편차를 보였다.

  • PDF

Additive manufacturing and mechanical properties evolution of biomedical Co-Cr-Mo alloys by using EBM method

  • Chiba, Akihiko;Kurosu, Shingo;Matsumoto, Hiroaki;Li, Yunping;Koizumi, Yuichiro
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.56.1-56.1
    • /
    • 2012
  • The microstructures and mechanical properties of Co-29Cr-6Mo alloy with C and N additions, produced by additive manufacturing using electron beam melting (EBM) method, were studied using X-ray diffraction, electron back scatter diffraction, transmission electron microscope, Vickers hardness tests, and tensile tests, focusing on the influences on the build direction and the various heat treatments after build. It is found that the microstructures for the as built specimens were changed from columnar to equiaxed grain structure with average grain size of approximately $10-20{\mu}m$ due to the heat treatment employing the reverse transformation from a lamellar (hcp + $Cr_2N$) phase to an fcc. Our results will contribute to the development of biomedical Ni-free Co-Cr-Mo-N-C alloys, produced by EBM method, with refined grain size and good mechanical properties, without requiring any hot workings.

  • PDF

Ti-2Al-9.2Mo-2Fe 합금의 후공정 특성에 미치는 보론의 영향 (Effect of Boron on the Manufacturing Properties of Ti-2Al-9.2Mo-2Fe Alloy)

  • 김태용;임가람;이용태;조경목;이동근
    • 한국재료학회지
    • /
    • 제25권11호
    • /
    • pp.636-641
    • /
    • 2015
  • Titanium has many special characteristics such as specific high strength, low elastic modulus, excellent corrosion and oxidation resistance, etc. Beta titanium alloys, because of their good formability and strength, are used for jet engines, and as turbine blades in the automobile and aerospace industries. Low cost beta titanium alloys were developed to take economic advantage of the use of low-cost beta stabilizers such as Mo, Fe, and Cr. Generally, adding a trace of boron leads to grain refinement in casted titanium alloys due to the pinning effect of the TiB phases. This study analyzed and evaluated the microstructural and mechanical properties after plastic deformation and heat treatment in boron-modified Ti-2Al-9.2Mo-2Fe alloy. The results indicate that a trace of boron addition made grains finer; this refinement effect was found to be maintained after subsequent processes such as hot forging and solution treatment. This can effectively reduce the number of required manufacturing process steps and lead to savings in the overall cost as well as low-cost beta elements.

Fe 함량에 따른 Ti-5Mo-xFe 준안정 베타 합금의 압축 변형거동 변화 (Change of Compressive Deformation Behaviors of Ti-5Mo-xFe Metastable Beta Alloy According to Fe Contents)

  • 이용재;이재관;이동근
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.303-310
    • /
    • 2023
  • β titanium alloys are widely used in aerospace industry due to their excellent specific strength and corrosion resistance. In particular, mechanical properties of metastable β titanium can efficiently be controlled by various deformation mechanisms such as slip, twinning, and SIM (Stress-Induced Martensite Transformation), making it an ideal material for many industrial applications. In this study, Ti-5Mo-xFe (x=1, 2, 4 wt%) alloy was designed by adding a relatively inexpensive β element to ensure price competitiveness. Additionally, microstructural analysis was conducted using OM, SEM, and XRD, while mechanical properties were evaluated through hardness and compression tests to consider the deformation mechanisms based on the Fe content. SIMT occurred in all three alloys and was influenced by the presence of βm (metastable beta) and beta stability. As the Fe content decreased, the α'' phase increased due to SIMT occurring within the βm phase, resulting in softening. Conversely, as the Fe content increased, the strength of the alloy increased due to a reduction in α'' formation and the contributions of solid solution strengthening and grain strengthening. Moreover, unlike the other alloys, shear bands were observed only in the fracture of the Ti-5Mo-4Fe alloy, which was attributed to differences in texture and microstructure.