• Title/Summary/Keyword: Mo(Ti) alloy

Search Result 91, Processing Time 0.023 seconds

Soild-state reaction in Ti/Ni multilayers

  • ;;;;Y.V.Kudryavtsev;B.Szymanski
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.140-140
    • /
    • 1999
  • Ti/Ni multilayered films (MLF) are ideal for neutron optics particularly in neutron guides and focusing devices. This system also possesses the tendency of amorphization through a solid-state reaction (SSR). This behaviors are closely related to the electronic structures and both magneto-optical (MO) and optical properties of metals depend strongly on their electron energy structures. Mutual inter-diffusion of the Tin and Ni atoms in the MLF caused by a low temperature annealing should decrease the thickness of pure Ni, as well as change the chemical and atomic order in the reactive zone. The application of the MO spectroscopy to the study of SSR in the MLF allows us to obtain an additional information on the changes in the atomic and chemical orders in the interface region. The optical one has no restriction on the magnetic state of the constituent sublayers. Therefore, the changes in magnetic, MO and optical properties of the Ti/Ni MLF due to SSR can be expected. To the best of our knowledge, the MO and optical spectroscopies were not used for this purpose. SSR has been studied in the series of the Ti/Ni MLFs with bilayer periods of 0.65-22.2nm and constant ratio of the Ti to Ni sublayers thickness by using MO and optical spectroscopies as well as an x-ray diffraction. The experimental MO and optical spectra are compared with the computer-simulated spectra, assuming various interface models. The relative changes in the x-ray diffraction spectra and MO properties of the Ti/Ni MLF caused by annealing are bigger for the multilayers with "thick" sublayers, or the SSR with the formation of amorphous alloy takes place mainly in the Ti/Ni multilayers with "thick" sublayers, while in the nominal threshold thickness of the Ni-sublayer for the observation of the equatorial Kerr effect in the as-deposited and annealed Ti/Ni MLFs of about 3.0 and 4.5nm thick is explained by the formation of amorphous alloy during the deposition or the formation of the nonmagnetic alloyed regions between pure components as a result of the SSR. For the case of Ti/Ni MLF the MO approach is more sensitive for the determination of the thickness of the reacted zone, while x-ray diffraction is more useful for structural analyses.structural analyses.

  • PDF

Effect of Mo and Mn Addition on the Oxidation Behavior of Binary Ti-Al Alloys

  • Han, Chang-Suk;Jin, Sung-Yooun;Bang, Hyo-In
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.361-364
    • /
    • 2018
  • Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second $Al_2O_3$ layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second $Al_2O_3$ layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second $Al_2O_3$ layer.

AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS (수종 임플랜트 금속의 내식성에 관한 전기화학적 연구)

  • Jeon Jin-Young;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF

Fabrication of Ti-Mo Core-shell Powder and Sintering Properties for Application as a Sputtering Target (Ti-Mo 코어-쉘 분말 제조 및 소결 특성 연구)

  • Won Hee Lee;Chun Woong Park;Heeyeon Kim;Yuncheol Ha;Jongmin Byun;Young Do Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.43-49
    • /
    • 2024
  • In this study, a core-shell powder and sintered specimens using a mechanically alloyed (MAed) Ti-Mo powder fabricated through high-energy ball-milling are prepared. Analysis of sintering, microstructure, and mechanical properties confirms the applicability of the powder as a sputtering target material. To optimize the MAed Ti-Mo powder milling process, phase and elemental analyses of the powders are performed according to milling time. The results reveal that 20 h of milling time is the most suitable for the manufacturing process. Subsequently, the MAed Ti-Mo powder and MoO3 powder are milled using a 3-D mixer and heat-treated for hydrogen reduction to manufacture the core-shell powder. The reduced core-shell powder is transformed to sintered specimens through molding and sintering at 1300 and 1400℃. The sintering properties are analyzed through X-ray diffraction and scanning electron microscopy for phase and porosity analyses. Moreover, the microstructure of the powder is investigated through optical microscopy and electron probe microstructure analysis. The Ti-Mo core-shell sintered specimen is found to possess high density, uniform microstructure, and excellent hardness properties. These results indicate that the Ti-Mo core-shell sintered specimen has excellent sintering properties and is suitable as a sputtering target material.

High Temperature Compressive Deformation Behavior of Ti-6Al-2Sn-4Zr-6Mo Alloy (Ti-6Al-2Sn-4Zr-6Mo 합금의 고온압축 변형거동)

  • Hyun, Yong-Taek;Lee, Yong-Tai;Lee, Chan-Gyu
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.82-87
    • /
    • 2001
  • The hot deformation behavior of Ti-6Al-2Sn-4Zr-6Mo(Ti6246) alloy was investigated in both the $\alpha$+$\beta$ and $\beta$-phase fields by conducting compression tests over a strain rate range of $10^{-3}s^{-1}$ to $10^0s^{-1}$. The flow stress was increased with increasing strain rate and decreasing test temperature. The flow curves obtained at temperatures below 90$0^{\circ}C$ exhibited a flow softening. However, in the $\beta$-phase field, above 95$0^{\circ}C$, the flow stress increased monotonically with plastic strain approaching steady state values. Constitutive equations for the dependence of flow stress on strain, strain rate, and temperature were developed through the analysis of the flow curves.

  • PDF

Electronic Structure and Magnetism of (3d, 4d)-Pd Alloyed c(2×2) Monolayers (3d 및 4d 전이금속과 Pd가 c(2×2) 합금을 이룬 단층의 자성에 대한 제일원리 연구)

  • Kim, Dong-Chul;Choi, Chang-Sik
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.83-88
    • /
    • 2010
  • We investigated the electronic structure and magnetism of the (3d, 4d)-Pd alloyed c($2{\times}2$) monolayer systems, by use of the FLAPW band method. For comparison, pure 3d- and 4d-transition metal monolayers are also considered. We found that the antiferromagnetic configuration of pure V monolayers is sustained in the V-Pd alloy system, while the Ti-Pd alloy system is changed to antiferromagnetic configuration from the ferromagnetic state in pure Ti monolayer. The 4d TM (Mo, Ru, Rh)-Pd monolayers are found to be stable in ferromagnetic configurations. The magnetic moments of Ru and Rh atoms in Ru-Pd and Rh-Pd systems are almost same with those of pure Ru and Rh monolayers, while the magnetic moment of Mo atom is increased to $2.98\;{\mu}_B$ in Mo-Pd alloyed system from the value of Mo monolayer, $0.02\;{\mu}_B$.

Microstructure and Fracture Strength of Si3N4 Joint System (질화 규소 접합체의 미세구조와 파괴 강도에 관한 연구)

  • 차재철;강신후;박상환
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.835-842
    • /
    • 1999
  • Si3N4 -Si3N4 joints were made using Ag-Cu-Ti and Ag-Cu-In-Ti via brazing method and the change in joint strength was investigated after heat treatment at $400^{\circ}C$ or $650^{\circ}C$ for up to 2000h. The initial strength of as-brazed joints with Ag-Cu-In-Ti was lower but the reduction of the strength was less dramatic than that with Ag-Cu-Ti. The joints made of a new brazing alloy Au-Ni-Cr-Mo-Fe which is developed for high temperature applications were heat-treated at $650^{\circ}C$ for 1000h. As the heat treatment time increased the bond strength increased. The results of the joining system with Mo or Cu interlayer showed that the strength of the joint with Mo interlayer was higher but the system incurred problems in joint production Also it was found from oxidation experiment that Ti and In affected the oxidation resistance of brazing alloy.

  • PDF

Characteristics of Hydrogen Storage in Ti-Cr-Mo and Ti-Cr-V bcc Alloys (Ti-Cr-Mo계 및 Ti-Cr-V계 bcc 합금의 수소저장특성에 관한 연구)

  • You, J.H.;Cho, S.W.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • The characteristics of hydrogen storage have been investigated in the Ti-Cr-Mo and Ti-Cr-V ternary alloys with bcc structure. The alloys were melted by arc furnace and remelted 4-5 times for homogeneity. The lattice parameters, microstructures and phases of the alloys were examined by SEM, EDX and XRD, and the Pressure-Composition isotherms of the alloys were measured. From these data the relationship of the maximum and effective hydrogen storage capacities vs. chemical composition, lattice parameter and the radius of tetrahedral site were analyzed and discussed. The results showed that all of these alloy, in the range of the this study, had mainly bcc solid solutions with small amount of Ti segregation due to a lower melting point of Ti compared with other elements. Lattice parameters of the alloys were very near to the atomic average values of lattice parameters of the constituent elements. It was also found that maximum hydrogen storage capacities of the Ti-Cr-Mo alloys increased with increasing Ti content and the radius of tetrahedral site but the effective hydrogen storage capacities decreased after showing the maximum. The hydrogen storage capacities of the Ti-Cr-V alloys were almost same even though the V contens were quite different from alloy to alloy and this could be attributed to the almost same Ti/Cr ratio of the alloys. The maximum effective hydrogen storage capacity of the Ti-Cr-Mo alloys was revealed at Ti content of about 40${\sim}$50 at% and radius of tetrahedral site of 0.43${\sim}$0.45 nm. The Ti-Cr-V alloys showed the hydrogen storage capacities of 3.0 wt% and effective hydrogen storage capacities of 1.5 wt%.

Change of Compressive Deformation Behaviors of Ti-5Mo-xFe Metastable Beta Alloy According to Fe Contents (Fe 함량에 따른 Ti-5Mo-xFe 준안정 베타 합금의 압축 변형거동 변화)

  • Yong-Jae Lee;Jae Gwan Lee;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.303-310
    • /
    • 2023
  • β titanium alloys are widely used in aerospace industry due to their excellent specific strength and corrosion resistance. In particular, mechanical properties of metastable β titanium can efficiently be controlled by various deformation mechanisms such as slip, twinning, and SIM (Stress-Induced Martensite Transformation), making it an ideal material for many industrial applications. In this study, Ti-5Mo-xFe (x=1, 2, 4 wt%) alloy was designed by adding a relatively inexpensive β element to ensure price competitiveness. Additionally, microstructural analysis was conducted using OM, SEM, and XRD, while mechanical properties were evaluated through hardness and compression tests to consider the deformation mechanisms based on the Fe content. SIMT occurred in all three alloys and was influenced by the presence of βm (metastable beta) and beta stability. As the Fe content decreased, the α'' phase increased due to SIMT occurring within the βm phase, resulting in softening. Conversely, as the Fe content increased, the strength of the alloy increased due to a reduction in α'' formation and the contributions of solid solution strengthening and grain strengthening. Moreover, unlike the other alloys, shear bands were observed only in the fracture of the Ti-5Mo-4Fe alloy, which was attributed to differences in texture and microstructure.