• Title/Summary/Keyword: Mo(Ti) alloy

Search Result 98, Processing Time 0.022 seconds

Effects of Mo Content on Surface Characteristics of Dental Ni-Ti Alloys (치과용 Ni-Ti합금의 표면특성에 미치는 Mo함량의 영향)

  • Han-Cheol Choe;Jae-Un Kim;Sun-Kyun ark
    • Corrosion Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.64-72
    • /
    • 2023
  • Ni-Ti shape memory alloy for dental nerve treatment devices was prepared by adding Mo to Ni-Ti alloy to improve flexibility and fatigue fracture characteristics and simultaneously increase corrosion resistance. Surface properties of the alloy were evaluated. Microstructure analysis of the Ni-Ti-xMo alloy revealed that the amount of needle-like structure increased with increasing Mo content. The shape of the precipitate showed a pattern in which a long needle-like structure gradually disappeared and changed into a small spherical shape. As a result of XRD analysis of the Ni-Ti-xMo alloy, R-phase structure appeared as Mo was added. R-phase and B2 structure were mainly observed. As a result of DSC analysis, phase transformation of the Ti-Ni-Mo alloy showed a two-step phase change of B2-R-B19' transformation with two exothermic peaks and one endothermic peak. As Mo content increased, R-phase formation temperature gradually decreased. As a result of measuring surface hardness of the Ti-Ni-Mo alloy, change in hardness value due to the phase change tended to decrease with increasing Mo content. As a result of the corrosion test, the corrosion potential and pitting potential increased while the current density tended to decrease with increasing Mo content.

Characteristic of Copper Films on Molybdenum Substrate by Addition of Titanium in an Advanced Metallization Process (Mo 하지층의 첨가원소(Ti) 농도에 따른 Cu 박막의 특성)

  • Hong, Tae-Ki;Lee, Jea-Gab
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.484-488
    • /
    • 2007
  • Mo(Ti) alloy and pure Cu thin films were subsequently deposited on $SiO_2-coated$ Si wafers, resulting in $Cu/Mo(Ti)/SiO_2$ structures. The multi-structures have been annealed in vacuum at $100-600^{\circ}C$ for 30 min to investigate the outdiffusion of Ti to Cu surface. Annealing at high temperature allowed the outdiffusion of Ti from the Mo(Ti) alloy underlayer to the Cu surface and then forming $TiO_2$ on the surface, which protected the Cu surface against $SiH_4+NH_3$ plasma during the deposition of $Si_3N_4$ on Cu. The formation of $TiO_2$ layer on the Cu surface was a strong function of annealing temperature and Ti concentration in Mo(Ti) underlayer. Significant outdiffusion of Ti started to occur at $400^{\circ}C$ when the Ti concentration in Mo(Ti) alloy was higher than 60 at.%. This resulted in the formation of $TiO_2/Cu/Mo(Ti)\;alloy/SiO_2$ structures. We have employed the as-deposited Cu/Mo(Ti) alloy and the $500^{\circ}C-annealed$ Cu/Mo(Ti) alloy as gate electrodes to fabricate TFT devices, and then measured the electrical characteristics. The $500^{\circ}C$ annealed Cu/Mo($Ti{\geq}60at.%$) gate electrode TFT showed the excellent electrical characteristics ($mobility\;=\;0.488\;-\;0.505\;cm^2/Vs$, on/off $ratio\;=\;2{\times}10^5-1.85{\times}10^6$, subthreshold = 0.733.1.13 V/decade), indicating that the use of Ti-rich($Ti{\geq}60at.%$) alloy underlayer effectively passivated the Cu surface as a result of the formation of $TiO_2$ on the Cu grain boundaries.

Surface Analysis of Ni-Cr and Co-Cr Alloys with Addition of Ti and Mo for Dental CAD/CAM Use (Ti 및 Mo 첨가에 따른 치과 CAD/CAM용 Ni-Cr 및 Co-Cr합금의 표면분석)

  • Moon, Dae-Sun;Choe, Han-Cheol
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.3
    • /
    • pp.139-148
    • /
    • 2018
  • In this study, surface analysis of Ni-Cr and Co-Cr alloys with addition of Ti and Mo for dental CAD/CAM use has been researched experimentally. The surface characteristics of the alloys were examined by Vickers hardness test, bonding strength test, surface roughness test, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction spectroscopy. The shrinkage of the sintered Ni-Cr alloy alloy was slightly larger than that of Ni-Cr-Ti alloy, and larger than Co-Cr alloy. Also, the addition of Mo showed a tendency to decrease shrinkage somewhat. From the result of XRD analysis, NiCr, $Ni_3Cr$ and $Ni_3Ti$ were observed in the sintered Ni-13Cr-xTi and Ni-13Cr-xMo alloys. In addition, ${\sigma}-CrCo$, $Co_2Mo_3$ and $TiCo_2$ were formed in the sintered Co-Cr-xTi and Co-Cr-xMo alloys. Surface hardness of Ti and Mo added alloy was higher than those of Ni-Cr and Co-Cr alloy. The bond strength between sintered alloy and porcelain was $16.1kgf/mm^2$ for Ni-13Cr alloy, $17.8kgf/mm^2$ for Ni-13Cr-5Ti alloy, and $8.2kgf/mm^2$ for Ni-13Cr-10Ti alloy, respectively.

Recrystallization Behavior of Mo-1.17 Ti-0.18 Zr-0.06 C Alloy (Mo-1.17 Ti-0.18 Zr-0.06 C 합금의 재결정거동에 관한 연구)

  • Yoon, Kook Han;Lee, Chong Mu;Choi, Ju
    • Analytical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.319-325
    • /
    • 1992
  • Plasma are melting method was used in making Mo-1.17 Ti-0.18 Zr-0.06 C ingot having over 99% of the theoretical density. Oxygen content herewith, decreased from the origin of 830ppm to 40ppm. After cold rolling of Mo alloy by 50%, the recrystallization behaviors were studied in the temperature range from $800^{\circ}C$ to $2100^{\circ}C$ for 1 hr isochronical holding time and also at $1400^{\circ}C$, $1500^{\circ}C$, $1600^{\circ}C$ for varying isothermal holding time 0 to 108000sec. The complete recrystallization temperature of Mo was $1400^{\circ}C$ but that of Mo alloy was $1700^{\circ}C$. 50%-1 hr recrystallization temperature of Mo alloy sheet was about $1500^{\circ}C$ and when compared to Mo there was an increase of over $300^{\circ}C$. The activation energy of recrystallization of Mo alloy sheet was 508kJ/mol.

  • PDF

Effect of C/Ti Atomic Ratio of TiCx Raw Powder on the Properties of Ti-Mo-W-TiC Sintered Hard Alloy

  • Nakahara, Kenji;Sakaguchi, Shigeya
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.109-110
    • /
    • 2006
  • We have studied the effect of C/Ti atomic ratio of TiCx (x=0.5, 0.75 and 1.0) raw powder on the properties of the Ti-Mo-WTiC sintered hard alloy. The decrease of C/Ti atomic ratio accelerated the densification in the sintering process. The hardness was remarkably improved up to 1350HV with decreasing the C/Ti atomic ratio because of increase of TiCx phase volume content and its fine dispersion. From the results of electro-chemical tests in acid and 3% NaCl solutions, it was obvious that every alloy had excellent corrosion resistance, which meant about 200 times better than that of WC-Co cemented carbide.

  • PDF

Preparation of Low Oxygen Content Powder from Ti-6Al-4V and Ti-8Al-1Mo-1V Alloy Scraps with Deoxidation in Solid State Process (Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 스크랩을 이용한 저산소 분말 제조와 탈산방법 비교)

  • Oh, Jung-Min;Suh, Chang-Youl;Kwon, Hanjung;Lim, Jae-Won;Roh, Ki-Min
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • The present study describes the process of producing low oxygen content alloy powder from Ti-6Al-4V and Ti-8Al-1Mo-1V (AMS 4972) alloy scraps using hydrogenation-dehydrogenation (HDH) and deoxidation in solid state (DOSS) processes. Each prepared powder was deoxidized with Ca contact and non-contact method to compare the deoxidation capability. It is known that the non-contact deoxidation method, using Ca vapor above the melting temperature $T_m$ of Ca, has greater deoxidation capability. However, Oxygen contents in Ti-6Al-4V and Ti-8Al-1Mo-1V powder after non-contact deoxidation method were higher than those after contact deoxidation method. Therefore, we investigate the effect of Al - the richest alloy element in theses Ti based metals - on the deoxidation processes.

Effect of Fe Content on Mechanical and Electrochemical Properties of Ti-Mo-Fe Alloys (Ti-Mo-Fe 합금의 Fe 함량에 따른 기계적 특성과 전기화학적 특성 비교·분석)

  • Ji-Won Kim;Jeong-Yeon Park;Min Gang;Ji-Hwan Park;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.145-152
    • /
    • 2023
  • β titanium alloys containing β stabilizing elements such as V, Nb, Ta, Mo and Fe are widely used etc, due to their excellent specific strength, corrosion resistance, fatigue strength and easy formability. New metastable β titanium alloys are developed containing low-cost elements (Mo and Fe) in this study. Fe element is a strong β-stabilizer which can affect the mechanical and electrochemical properties of Ti-5Mo-xFe (x = 1, 4 wt%) alloys. These properties were analyzed in connection with microstructure and phase distribution. Ti-5Mo-4Fe alloy showed higher compression yield stress and maximum stress than Ti-5Mo-1Fe alloy due to solid-solution hardening and grain refinement hardening effect. As Fe element increased, Fe oxide formation and reduction of ${\bar{Bo}}$ (bond order) value affect the decrease of corrosion resistance. Ti-5Mo-xFe alloys were more excellent than Ti-6Al-4V ELI alloy.

Effect of Heat Treatment on the Mechanical Properties of a Ti-15Mo-3Nb-3Al-0.2Si Alloy (β-type Ti-14Mo-3Nb-3Al-0.2Si 합금의 열처리 조건에 따른 기계적 특성)

  • Kim, Tae Ho;Lee, Jun Hee;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • The mechanical properties of the various heat treatment conditions on Ti-15Mo-3Nb-3Al-0.2Si alloy plates were examined. XRD patterns from the surface of Ti-15Mo-3Nb-3Al-0.2Si were analyzed as a solution-treated Ti alloy has the single-phase ${\beta}$ structure whereas the aged Ti alloys have the ${\beta}$ matrix embedded with ${\alpha}$ needles. High strength (~1500 MPa) with decent ductility (7%) was obtained by the Ti alloy double aged at $300^{\circ}C$ and $520^{\circ}C$ for 8 hours each. The double-aged alloy exhibits the finer structure than the single-aged alloy at $300^{\circ}C$ for 8 hours because of the higher nucleation rate of ${\alpha}$ needles at an initial low aging temperature ($320^{\circ}C$). TEM observation revealed that the fine nanostructure with ${\alpha}$ needles in the ${\beta}$ matrix ensured the excellent mechanical properties in the double aged Ti-15Mo-3Nb-3Al-0.2Si alloy. In the solution treated alloy, the yield drop, stress-serrations and the ductility minimum typically associated with dynamic strain aging can be attributed to the dynamic interaction between dislocations and oxygen atoms. The yield drop and the stress serration were not observed in aged samples because the geometrically introduced dislocations due to phase precipitates suppressed the dynamic strain aging.

MECHANICAL PROPERTIES AND CORROSION BEHAVIORS OF AGED Ti-4Mo-4Cr-X (X = Sn, V, Zr) ALLOYS FOR METALLIC BIOMATERIALS

  • KWANGMIN LEE;GUNHEE LEE
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1297-1301
    • /
    • 2020
  • The purpose of this study was to investigate the mechanical properties of beta type aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) quaternary alloy for use as a cardiovascular stent. Titanium (Ti) alloys were fabricated using a vacuum arc remelting furnace process. To homogenize the specimens of each composition and remove the micro segregation, all cast specimens were subjected to homogenization at 850℃ for 4 h, which was 100℃ higher than the β-transus temperature of 750℃. The tensile strength and elongation of the aged Ti-4Mo-4Cr-X (X = V, Sn, Zr) alloys were increased as compared to the homogenized alloys. In addition, many α/β interface boundaries formed after aging treatment at 450℃, which acted as inhibitors of strain and caused an increase in tensile strength. The elongation of Ti-4Mo-4Cr-X alloys consisting of α + β phases after aging treatment was improved by greater than 30%. Results of a potentiodynamic polarization test showed that the lowest current density of Ti-4Mo-4Cr-4Sn with 1.05 × 10-8 A/cm2 was obtained. The present Ti-4Mo-4Cr-X alloys showed better corrosion characteristics as compared to the 316L stainless steel and L605 (Co-Cr alloy) cardiovascular stent alloys.

Effects of Heat Treatment and Ti addition on Microstructures in Modified Invar Alloys (개량형 인바합금의 미세조직에 미치는 열처리 및 Ti 첨가 영향)

  • Huh, Min-Sun;Lee, Jung-Han;Lee, Chan-Gyu;Lee, Jae-Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.412-419
    • /
    • 2000
  • There has been a considerable attention on Invar alloys due to its low thermal expansion property. A low thermal expansion property of Invar alloys, lower than $10^{-6}$ near the room temperature, is attractive for electric transmission lines and precision machine tools. However, the expansion property of Invar alloys is limited below about 520K, and mechanical properties are relatively low to apply to electric transmission line. In order to improve mechanical properties in this alloy, Ti alloying element was added to the $Ni_{38}-Mo_2-Cr_1-Fe$ invar alloy. The microstructure Ti added alloy showed finer than that of the unalloyed one. It was found that the (Mo, Ti), Mo carbide formed by Ti addition obstacled grain growth by pinning effect and supplyed recrystallization sites during heat-treatment. Optimum heat-treatment conditions with Ti addition were also discussed in the modified Invar alloy.

  • PDF