DOI QR코드

DOI QR Code

Preparation of Low Oxygen Content Powder from Ti-6Al-4V and Ti-8Al-1Mo-1V Alloy Scraps with Deoxidation in Solid State Process

Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 스크랩을 이용한 저산소 분말 제조와 탈산방법 비교

  • Received : 2014.12.04
  • Accepted : 2015.01.23
  • Published : 2015.02.28

Abstract

The present study describes the process of producing low oxygen content alloy powder from Ti-6Al-4V and Ti-8Al-1Mo-1V (AMS 4972) alloy scraps using hydrogenation-dehydrogenation (HDH) and deoxidation in solid state (DOSS) processes. Each prepared powder was deoxidized with Ca contact and non-contact method to compare the deoxidation capability. It is known that the non-contact deoxidation method, using Ca vapor above the melting temperature $T_m$ of Ca, has greater deoxidation capability. However, Oxygen contents in Ti-6Al-4V and Ti-8Al-1Mo-1V powder after non-contact deoxidation method were higher than those after contact deoxidation method. Therefore, we investigate the effect of Al - the richest alloy element in theses Ti based metals - on the deoxidation processes.

Ti-6Al-4V 및 Ti-8Al-1Mo-1V (AMS 4972) 합금 스크랩을 대상으로 수소화-탈수소화(HDH) 기술로 분말을 제조하고 칼슘 접촉식과 비접촉식 방법으로 탈산을 실시하여 탈산효과를 비교하였다. 타이타늄을 대상으로 한 이전 연구결과에서는 비접촉식 탈산법이 탈산 효과가 더 크다고 보고되었으나 산소함유량을 분석한 결과 Ti-6Al-4V 및 Ti-8Al-1Mo-1V 합금 분말 모두 비접촉식으로 탈산한 분말의 산소함유량이 더 높은 것으로 밝혀졌다. 따라서, 본 연구에서는 XRD와 가스분석기를 이용하여 합금 내에 가장 많이 함유되어 있는 알루미늄이 비접촉식 탈산 공정 중 탈산에 미치는 영향을 조사하였다.

Keywords

References

  1. Oh J. M. et al., 2011: Oxygen Effect on the Mechanical Properties and Lattice Strain of Ti and Ti-6Al-4V, Met. Mater. Int., 17(5), pp. 733-736. https://doi.org/10.1007/s12540-011-1006-2
  2. Oh J. M. et al., 2013: Recycling and Applications of Titanium Alloy Scraps, Clean Technology, 19(2), pp. 75-83. https://doi.org/10.7464/ksct.2013.19.2.075
  3. Oh J. M. et al., 2012: Recycling of Ti Turning Scraps for Production of Consumable Arc Electrode, J. of Korean Inst. of Resources Recycling, 21(5), pp. 58-64. https://doi.org/10.7844/kirr.2012.21.5.58
  4. Norgate T. E. et al., 2007: Assessing the Environmental Impact of Metal Production Processes, J. Clean. Prod., 15, pp. 838-848. https://doi.org/10.1016/j.jclepro.2006.06.018
  5. Oh J. M. et al., 2014: Preparation of low oxygen content alloy powder from Ti binary alloy scrap by hydrogenationdehydrogenation and deoxidation process, J. Alloys Comp., 593, pp. 61-66. https://doi.org/10.1016/j.jallcom.2014.01.033
  6. Roh K. M. et al., 2014: Comparison of deoxidation capability for preparation of low oxygen content powder from TiNi alloy scraps, Powder Technol., 253, pp. 266-269. https://doi.org/10.1016/j.powtec.2013.10.028
  7. Zheng H. et al., 2008: Recovery of titanium metal scrap by utilizing chloride wastes, J. Alloys Compds., 461, pp. 459-466. https://doi.org/10.1016/j.jallcom.2007.07.025
  8. H. Sibum, 2003: Titanium and Titanium alloys, Adv. Eng. Mater., 5(6) pp. 393-398. https://doi.org/10.1002/adem.200310092
  9. Oh J. M. et al., 2011: Oxygen Effects on the Mechanical Properties and Lattice Strain of Ti and Ti-6Al-4V, Met. Mater. Int., 17, pp. 733-736. https://doi.org/10.1007/s12540-011-1006-2
  10. Oh J. M. et al., 2012: Preparation method of Ti powder with oxygen concentration of <1000 ppm using Ca, Powder Metall., 55, pp. 402-404. https://doi.org/10.1179/1743290112Y.0000000013
  11. Liang C. P. et al., 2010: Fundamental Influence of Hydrogen on Various Properties of $\alpha$-Titanium, Int. J. Hydrogen Energy, 35, pp. 3812-3816. https://doi.org/10.1016/j.ijhydene.2010.01.080
  12. Schuster J. C. et al., 2006: Reassessment of the Binary Aluminum-Titanium Phase Diagram, J. Phase Equilib. Diffus., 27, pp. 255-277. https://doi.org/10.1361/154770306X109809
  13. Oh J. M. et al., 2014: Oxygen behavior during non-contact deoxidation of titanium powder using calcium vapor, Thin Solid Films, 551, pp. 98-101. https://doi.org/10.1016/j.tsf.2013.11.076
  14. Suzuki R. O. et al., 1999: Calcium-deoxidation of niobium and titanium in Ca-saturated $CaCl_2$ molten salt, J. Alloys Comp., 288, pp. 173-182. https://doi.org/10.1016/S0925-8388(99)00116-4
  15. Yan X. Y. et al., 2009: Synthesis of niobium aluminides by electro-deoxidation of oxides, J. Alloys Compds., 486, pp. 154-161. https://doi.org/10.1016/j.jallcom.2009.06.176
  16. Vojtech D. et al., 2003: High temperature oxidation of titanium.silicon alloys, Mater. Sci. Eng. A, 361, pp. 50-57. https://doi.org/10.1016/S0921-5093(03)00564-1