• 제목/요약/키워드: MnO2 cathode

검색결과 305건 처리시간 0.023초

고체산화물 연료전지용 (La, Sr)$MnO_3$ 양극에 대한 Co 첨가효과 (Effect of Co Dopant on the (La, Sr)$MnO_3$ Cathode for Solid Oxide Fuel Cell)

  • 김재동;김구대;이기태
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.612-616
    • /
    • 2000
  • The effect of Co dopant on the (La, Sr)MnO3 cathode was investigated. La2Zr2O7 and SrZrO3 were formed as the reaction products between YSZ and LSMC. The reactivity of LSMC with YSZ increased with increasing Co content. However, the cathodic polarization resistance decreased with increasing Co doping. Therefore, doping Co at Mn site in the (La, Sr)MnO3 cathode was effective on controlling the polarization resistance of the cathode. The polarization property of LSMC-YSZ composite(60 wt%: 40 wt%) cathode was better than that of LSMC single cathode.

  • PDF

RF 스퍼터법을 이용한 Li2MnSiO4 리튬 이차전지 양극활물질 박막 제조 및 전기화학적 특성 (Fabrication of Li2MnSiO4 Cathode Thin Films by RF Sputtering for Thin Film Li-ion Secondary Batteries and Their Electrochemical Properties)

  • 채수만;심중표;선호정
    • 한국전기전자재료학회논문지
    • /
    • 제30권7호
    • /
    • pp.447-453
    • /
    • 2017
  • In this study, $Li_2MnSiO_4$ cathode material and LiPON solid electrolyte were manufactured into thin films, and the possibility of their use in thin-film batteries was researched. When the RTP treatment was performed after $Li_2MnSiO_4$ cathode thin-film deposition on the SUS substrate by a sputtering method, a ${\beta}-Li_2MnSiO_4$ cathode thin film was successfully manufactured. The LiPON solid electrolyte was prepared by a reactive sputtering method using a $Li_3PO_4$ target and $N_2$ gas, and a homogeneous and flat thin film was deposited on a $Li_2MnSiO_4$ cathode thin film. In order to evaluate the electrochemical properties of the $Li_2MnSiO_4$ cathode thin films, coin cells using only a liquid electrolyte were prepared and the charge/discharge test was conducted. As a result, the amorphous thin film of RTP treated at $600^{\circ}C$ showed the highest initial discharge capacity of about $60{\mu}Ah/cm^2$. In cases of coin cells using liquid/solid double electrolyte, the discharge capacities of the $Li_2MnSiO_4$ cathode thin films were comparable to those without solid LiPON electrolyte. It was revealed that $Li_2MnSiO_4$ cathode thin films with LiPON solid electrolyte were applicable in thin film batteries.

Sn-modified LiNi0.9Co0.05Mn0.05O2 cathode with extraordinary electrochemical performances

  • Chea-Yun Kang;Seung-Hwan Lee
    • Journal of Ceramic Processing Research
    • /
    • 제23권3호
    • /
    • pp.243-246
    • /
    • 2022
  • We report the synthesis of Sn-modified LiNi0.9Co0.05Mn0.05O2 cathode via a co-precipitation method. The key factor to enhancethe electrochemical performances of lithium ion batteries is to suppress the structural reconstruction because of the irreversibilityof the H2-H3 phase transition, resulting in rapid performance decay. The as-prepared Sn-modified LiNi0.9Co0.05Mn0.05O2 cathodedelivers an initial discharge capacity of 221.4 mAh g-1 with a high coulombic efficiency of 88.5 %. Moreover, it shows betterpolarization of 0.33 V and superior cycle stability of 98.8% after 58 cycles. These values are obviously higher than those ofpristine LiNi0.9Co0.05Mn0.05O2 cathode. Therefore, we can believe that Sn-modified LiNi0.9Co0.05Mn0.05O2 cathode is one of theeffective way for high-performance cathode material in lithium ion batteries.

리튬 고체전지용 $LiMn_2O_4$ Composite Cathode의 충방전 특성 (Charge/discharge Properties of $LiMn_2O_4$ Composite Cathode for All-solid state Rechargeable Batteris)

  • 김종욱;박계춘;구할본
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1511-1513
    • /
    • 1998
  • The purpose of this study is to research and develop PEO/PVDF electrolytes and $LiMn_2O_4$ composite cathode for all-solid state lithium rechargeable battery. We investigated AC impedance response and charge/discharge cycling of $LiMn_2O_4$/SPE/Li cells. The cell resistance was decreased so much initial charge process from 0% SOC to 100% SOC. The radius of semicircle of $LiMn_2O_4$/SPE/Li cell was so much from initial state to 20th cycling. The discharge capacity of the $LiMn_2O_4$ composite cathode was 144mAh/g based on $LiMn_2O_4$.

  • PDF

리튬 폴리머 전지용 $LiMnO_2$정극의 도전재에 따른 전기 화학적 특성 (Electrochemical Properties of $LiMnO_2$ Cathode as a Function of Addition of Electric Active Materials for Lithium Polymer Batteries)

  • 조영재;김종욱;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.474-477
    • /
    • 2001
  • The properties of LiMnO$_2$ was studied as a cathode active material for lithium polymer batteries. LiMnO$_2$ cathode active materials were synthesized by the reaction of LiOH . $H_2O$ and Mn$_2$O$_3$at various temperature under argon atmosphere. For lithium polymer battery applications, the LiMnO$_2$cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160-170 mAh/g for ο-LiMnO$_2$ cell was achieved. Used that SP270 as electric active material in LiMnO$_2$, it is excellent than property of electric active material used Acetylene black or KS6 at charge/discharge capacity.

  • PDF

도전재 종류와 양에 따른 LiMn$_2$O$_4$정극의 충방전 용량 및 Cycle 안정성 (Charge/discharge capacity and cycle salability of LiMn$_2$O$_4$cathode by sorts and volume of conductive agent)

  • 정인성;박계춘;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.275-278
    • /
    • 1997
  • We investigated effectness of sort and volume of conductive agent to charge/discharge capacity of LiMn$_2$O$_4$. LiMn$_2$O$_4$is prepared by reacting stoichiometric mixture of LiOH . $H_2O$ and MnO$_2$(mole ratio 1 : 2) and heating at 80$0^{\circ}C$ for 24h, 36h, 48h, 60h and 72h. All LiMn$_2$O$_4$cathode active materials show spinel structure. Cathode active materials calcined at 80$0^{\circ}C$ for 36h, charge/discharge characteristics and cycle stability have remarkable advantages. Used that super-s-black and 20wt% as conductive agent in LiMn$_2$O$_4$, it is excellent than property of cathode used Acetylene black or mixture of Super-s-black and acetylene black at charge/discharge capacity and cycle stability. Also, specific efficiency of cathode is excellent as over 98% and that of first cycle is excellent as 92%.

  • PDF

Electrochemical Performances of the Fluorine-Substituted on the 0.3Li2MnO3·0.7LiMn0.60Ni0.25Co0.15O2 Cathode Material

  • Kim, Seon-Min;Jin, Bong-Soo;Park, Gum-Jae;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권3호
    • /
    • pp.87-93
    • /
    • 2014
  • The fluorine-substituted $0.3Li_2MnO_3{\cdot}0.7Li[Mn_{0.60}Ni_{0.25}Co_{0.15}]O_{2-x}F_x$ cathode materials were synthesized by using the transition metal precursor, $LiOH{\cdot}H_2O$ and LiF. This was to facilitate the movement of lithium ions by forming more compact SEI layer and to reduce the dissolution of transition metals. The $0.3Li_2MnO_3{\cdot}0.7Li[Mn_{0.60}Ni_{0.25}Co_{0.15}]O_{2-x}F_x$ cathode material was sphere-shaped and each secondary particle had $10{\sim}15{\mu}m$ in size. The fluorine-substituted cathodes initially delivered low discharge capacity, but it gradually increased until 50th charge-discharge cycles. These results indicated that fluorine substitution gave positive effects on the structural stabilization and resistance reduction in materials.

리튬 폴리머 전지용 $LiMnO_2$의 열처리 온도에 따른 충방전 특성 (Charge-discharge Properties of $LiMnO_2$ as a Function of Heat Treatment Temperature for Lithium Polymer Batteries)

  • 조영재;위성동;김상기;구할본;김종욱;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 센서 박막재료
    • /
    • pp.23-26
    • /
    • 2001
  • The properties of $LiMnO_2$ was studied as a cathode active material for lithium polymer batteries. $LiMnO_2$ cathode active materials were synthesized by the reaction of $LiOH{\cdot}H_2O$ and $Mn_2O_3$ at various temperature under argon atmosphere. The powders were characterized by the X -ray diffraction. For lithium polymer battery applications, the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160~170 mAh/g for o-$LiMnO_2$ cell was achieved. The capacity of o-$LiMnO_2$ electrode demonstrated better than of the spinel $LiMnO_2$ by solid-state reaction.

  • PDF

플렉서블 Li/MnO2 일차전지의 제조공정에 따른 전기적 특성 (Electrical Characteristics According to the Manufacturing Process of the Flexible Li/MnO2 Primary Cell)

  • 이미재;채유진;김진호;황종희;박상선
    • 한국재료학회지
    • /
    • 제22권12호
    • /
    • pp.717-721
    • /
    • 2012
  • Manganese dioxide ($MnO_2$) is one of the most important cathode materials used in both aqueous and non-aqueous batteries. The $MnO_2$ polymorph that is used for lithium primary batteries is synthesized either by electrolytic (EMD-$MnO_2$) or chemical methods (CMD-$MnO_2$). Commonly, electrolytic manganese dioxide (EMD) is used as a cathode mixture material for dry-cell batteries, such as a alkaline batteries, zinc-carbon batteries, rechargeable alkaline batteries, etc. The characteristics of lithium/manganese-dioxide primary cells fabricated with EMD-$MnO_2$ powders as cathode were compared as a function of the parameters of a manufacturing process. The flexible primary cells were prepared with EMD-$MnO_2$, active carbon, and poly vinylidene fluoride (PVDF) binder (10 wt.%) coated on an Al foil substrate. A cathode sheet with micro-porous showed a higher discharge capacity than a cathode sheet compacted by a press process. As the amount of EMD-$MnO_2$ increased, the electrical conductivity decreased and the electrical capacity increased. The cell subjected to heat-treatment at $200^{\circ}C$ for 1 hr showed a high discharge capacity. The flexible primary cell made using the optimum conditions showed a capacity and an average voltage of 220 mAh/g and 2.8 V, respectively, at $437.5{\mu}A$.

리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성 (Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries)

  • 공명철;;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제29권5호
    • /
    • pp.298-302
    • /
    • 2016
  • In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.