• 제목/요약/키워드: Mn-doping

검색결과 168건 처리시간 0.029초

Re2O3(R=Dy, Gd, Ho)첨가에 따른 Mn-Zn ferrite의 고주파 특성에 관한 연구 (A Study on the High Frequency Properties of Mn-Zn ferrite with Re2O3(R=Dy, Gd, Ho) Addition)

  • 최우성
    • 한국전기전자재료학회논문지
    • /
    • 제16권6호
    • /
    • pp.538-548
    • /
    • 2003
  • We studied effects by Re$_2$O$_3$(R=Dy, Gd, Ho) addition on the properties of Mn-Zn ferrite. The doping concentration range from 0.05 wt% to 0.25 wt%. All samples were prepared by standard fabrication of ceramics. With increasing the rare earth oxides, specific density and initial permeability increased on the whole. But, the tendencies such as upper result had the measured value on limitation and characteristics saturated or decreased properties after that. In case of excessive addition of additive beyond some level, initial permeability properties of ferrite have gone down in spite of anomalous grain. With increasing the content of additive, both the real and imaginary component of complex permeability and the magnetic loss (tan$\delta$) increased. Because the increased rate of real component had higher than imaginary component, magnetic loss increased none the less for increasing the real component related with magnetic permeability. But, the magnetic loss of ferrite doped with the rare earth oxides was lower than that of Mn-Zn ferrite at any rate. The small amount of present rare earth oxides in Mn-Zn ferrite composition led to enhancement of resistivity in bulk, and more so in the grain boundary. It was seem to be due to the formation of mutual reaction such as between iron ions and rare earth element ions.

Nd2O3 첨가에 따른 Mn-Zn ferrite의 고주파 특성에 관한 연구 (A Study on the high frequency properties of Mn-Zn ferrite with Nd2O3 addition)

  • 최우성
    • 한국재료학회지
    • /
    • 제13권4호
    • /
    • pp.228-232
    • /
    • 2003
  • The effects of$ Nd_2$$O_3$addition on the properties of Mn-Zn ferrite were investigated in the doping concentration range from 0.05 to 0.25 wt%. All samples were prepared by standard fabrication of ferrite ceramics. With increasing the Neodymium oxides, specific density and initial permeability increased on the whole. But, the tendencies such as upper result had the measured value on limitation and characteristics saturated or decreased properties after that. With increasing the content of Neodymium oxides. both the real and imaginary component of complex permeability and the magnetic loss(tan$\delta$) increased. Because reason that magnetic loss increases is high ratio that a real department increases than imaginary department. Magnetic loss increased none the less for increasing the real department related with magnetic permeability. But, the magnetic loss of ferrite doped with the Neodymium oxides were lower than that of none doped Mn-Zn ferrite. The small amount of percent Neodymium oxides in Mn-Zn ferrite composition led to enhancement of resistivity in bulk, and more so in the grain boundary.

Possible Role of Disorder on Magnetostructural Transition in La1-xBaxMnO3

  • Kim, N.G.;Jung, J.H.
    • Journal of Magnetics
    • /
    • 제12권3호
    • /
    • pp.103-107
    • /
    • 2007
  • Magnetic field induced structural transition has been systematically investigated for $La_{1-x}Ba_xMnO_3$ with the fine control of carrier doping $(0.15{\leq}x{\leq}0.20)$. Application of a magnetic field results in the suppression of the rhombohedral-orthorhombic transition temperature $(T_s)$ and the increase of insulator-metal transition temperature $(T_{MI})$. Near x = 0.17, where $T_S$ is similar to $T_{MI}$ at zero magnetic field, we found that the $T_S$ smoothly decreased with magnetic field even though it intersected the $T_{MI}$ near 3 T. Also, the magnetostructural phase diagram obtained from the temperature sweep and from the magnetic field sweep is not significantly modified. By comparing the magnetostructural transition in $La_{1-x}Sr_xMnO_3$, we have suggested that the large disorder originated from ionic size differences between La and Ba may weaken the sensitivity of the kinetic energy of $e_g$ electrons on the degree of lattice distortion in $La_{1-x}Ba_xMnO_3$.

Effect of substituent and dopant on properties of $LiMn_2O_4$ as cathode materials for lithium ion secondary batteries

  • Lee, Dae-Jin;Wai, Yin-Loo;Jee, Mi-Jung;Bae, Hyun;Choi, Byung-Hyun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.294-294
    • /
    • 2007
  • Spinel cathode material $LiMn_2O_4$ is currently studied as a promising cathode material for lithium ion secondary batteries for future applications because of it is low cost, easy to be prepared and capable to be operated in high voltage range. However as a cathode material, $LiMn_2O_4$ performs a poor capacity retention which leads to short cycle life. In this study, stoichiometric $LiMn_2O_4$ was synthesized with granulation method with ion substitution to stabilize its structure and niobium doping to improve its conductivity. These well-mixed powders were calcined at $850^{\circ}C$ for 6 hours and its properties were investigated. Correlations of dopant and electrochemical properties were examined as well.

  • PDF

고출력 압전 디바이스 응용을 위한 PZ-PT-PMN계 압전 세라믹의 압전 특성 (The characteristics of PZ-PT-PMN piezoelectric ceramic for application to high power piezoelectric device)

  • 홍종국;이종섭;정수현;채홍인;임기조;류부형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.661-664
    • /
    • 1999
  • The piezoelectric properties and the doping effect of Nb$_2$O$_{5}$ for 0.95 PbZr$_{x}$ Ti$_{1-x}$ -O$_3$+0.05 Pb(Mnsub 1/3/Nb$_{2}$3/)O$_3$ compositions have been investigated. In the composition of 0.95PbZr$_{0.51}$Ti$_{0.49}$O$_3$+0.05Pb(Mn$_{1}$3/Nb/syb 2/3/)O$_3$ the values of k$_{p}$ and $\varepsilon$$_{33}$ $^{T}$ are maximized, but Q$_{m}$ was minimized (k$_{p}$ =0.57, Q$_{m}$ =1550). The grain size was suppressed and the uniformity of grain was improves with doping concentration of Nb$_2$O$_{5}$ far 0.95PbZr$_{0.51}$Ti$_{0.49}$O$_3$+0.05Pb(Mn$_{1}$3/Nb/syb 2/3/)O$_3$. sample. The values of k$_{p}$ first decreased slightly when a small amount of Nb$^{5+}$ is doped and then decreased when the Nb$^{5+}$ concentration is further increased. The Q$_{m}$ . OR the Other hand. increased monotonously with doping concentration of Nb$_2$O$_{5}$ .{5}$ . .

  • PDF

PZ-PT-PMWS의 압전 및 전기기계적 특성 (The Piezoelectic and electromechanical Characteristics of PZ-PT-PMWS)

  • 홍종국;이종섭;채홍인;윤만순;정수현;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.403-406
    • /
    • 2000
  • The piezoelectric properties and the doping effect of N $b_2$ $O_{5}$ and Mn $O_2$for 0.95PbZ $r_{x}$ $Ti_{x}$ $O_3$+0.05Pb(M $n_{0.42}$ $W_{0.26}$S $b_{0.32}$) $O_3$ compositions have been investigated. In the composition of 0.95PbZ $r_{0.54}$ $Ti_{0.46}$ $O_3$+0.05Pb(M $n_{0.42}$ $W_{0.26}$S $b_{0.32}$) $O_3$the Values Of $k_{p}$ find and $\varepsilon$$_{33}$ $^{T}$ are maximized, but $Q_{m}$ Was minimized ( $k_{p}$ =0.51, $Q_{m}$ =1750). The grain size was suppressed and the uniformity of grain was improved with doping concentration of N $b_2$ $O_{5}$ for 0.95PbZ $r_{0.54}$ $Ti_{0.46}$ $O_3$+0.005Pb(M $n_{0.42}$ $W_{0.26}$S $b_{0.32}$) $O_3$sample. The values of $k_{p}$ increased and the values of $Q_{m}$ slightly decreased when 0.5 wt% of N $b_2$ $O_{5}$ is doped. And the values of $k_{p}$ was the same formation of the N $b_2$ $O_{5}$ dopant when 0.5 wt% of M $n_2$ $O_{5}$ is doped. But the values of $Q_{m}$ was deeply decreased when 0.5 wt% of Mn $O_2$is doped. As a experiment results under high electric field driving, this piezoelectric ceramics are very stable. Conclusively, piezoelectric ceramic compsiton investigated at this paper is suitable for application to high power piezoelectric devices.. devices..ices.. devices..

  • PDF

Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN-29PT [71Pb(Mg1/3Nb2/3)O3-29PbTiO3] Single Crystals and Polycrystalline Ceramics

  • Oh, Hyun-Taek;Joo, Hyun-Jae;Kim, Moon-Chan;Lee, Ho-Yong
    • 한국세라믹학회지
    • /
    • 제55권2호
    • /
    • pp.166-173
    • /
    • 2018
  • In order to investigate the effect of Mn on the dielectric and piezoelectric properties of PMN-PT [$Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$], four different types of 71PMN-29PT samples were prepared using the solid-state single crystal growth (SSCG) method: (1) Undoped single crystals, (2) undoped polycrystalline ceramics, (3) Mn-doped single crystals, and (4) Mn-doped polycrystalline ceramics. In the case of single crystals, the addition of 0.5 mol% Mn to PMN-PT decreased the dielectric constant ($K_3{^T}$), piezoelectric charge constant ($d_{33}$), and dielectric loss (tan ${\delta}$) by about 50%, but increased the coercive electric field ($E_C$) by 50% and the electromechanical quality factor ($Q_m$) by 500%, respectively. The addition of Mn to PMN-PT induced an internal bias electric field ($E_I$) and thus specimens changed from piezoelectrically soft-type to piezoelectrically hard-type. This Mn effect was more significant in single crystals than in ceramics. These results demonstrate that Mn-doped 71PMN-29PT single crystals, because they are piezoelectrically hard and simultaneously have high piezoelectric and electromechanical properties, have great potential for application in fields of SONAR transducers, high intensity focused ultrasound (HIFU), and ultrasonic motors.

Magnetic and Magnetocaloric Properties of Perovskite Pr0.5Sr0.5-xBaxMnO3

  • Hua, Sihao;Zhang, Pengyue;Yang, Hangfu;Zhang, Suyin;Ge, Hongliang
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.386-390
    • /
    • 2013
  • This paper studies the effects of A-site substitution by barium on the magnetic and magnetocaloric properties of $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ (x = 0, 0.04, 0.08 and 0.1). The tetragonal crystal structures of the samples are confirmed by room temperature X-ray diffraction. The dependence of the Curie temperature ($T_C$) and the magnetic entropy change (${\Delta}S_M$) on the Ba doping content has been investigated. The samples of all doping contents undergo the second order phase transition. As the concentration of Ba increased, the maximum entropy change ($|{\Delta}S_M|_{max}$) increased gradually, from 1.15 J $kg^{-1}$ $K^{-1}$ (x = 0) to 1.36 J $kg^{-1}$ $K^{-1}$ (x = 0.1), in a magnetic field change of 1.5 T. The measured value of $T_C$ is 265 K, 275 K, 260 K and 250 K for x = 0, 0.04, 0.08 and 0.1, respectively. If combining these samples for magnetic refrigeration, the temperature range of ~220 K and 290 K, where |${\Delta}S_M$|max is stable at ~1.27 J $kg^{-1}$ $K^{-1}$ and RCP = 88.9 $J{\cdot}kg^{-1}$ for ${\Delta}H$ = 1.5 T. $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ compounds, are expected to be suitable for magnetic-refrigeration application due to these magnetic properties.

고체전해질형 연료전지용 전해질 제작 및 La1-xSrxMnO3의 특성에 관한 고찰 (Electrolyte Preparation and Characteristics of La1-xSrxMnO3 for Solid Oxide Fuel Cell)

  • 임형렬;이주성
    • 공업화학
    • /
    • 제7권1호
    • /
    • pp.9-17
    • /
    • 1996
  • 고체전해질형 연료전지용 전해질로 사용되는 8mol% YSZ($Y_2O_3$ stabilized zirconia)의 소결조건을 변화시켜 이온전도도를 측정하였다. 그 결과 소결조건이 $1400^{\circ}C$, 10시간이었을 때 가장 높은 값인 $10^{-1}S.cm^{-1}$를 나타내었다. 또한 산소극재료로서 $La_{1-x}Sr_xMnO_3$($0{\leq}{\times}{\leq}1$)를 고상반응법으로 제조하여 과전압, 전자 전도도, 전해질인 YSZ와의 계면저항등을 살펴보았다. 그 결과 La에 대한 Sr의 치환량이 50mol%일 때 가장 우수한 특성을 나타내었다.

  • PDF

Novel Method to Confine Manganese Oxide Nanoparticles in Polyaniline Hollow Nanospheres and Its Supercapacitive Properties

  • Kwon, Hyemin;Lee, Jinho;Munkhbaatar, Naranchimeg;Yim, Sanggyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.196.2-196.2
    • /
    • 2014
  • Nanostructuring the electrode surface is an emerging technology to improve the performance of supercapacitors since it can facilitate charge transfer, ion diffusion and electron propagation during electrochemical process. Fabrication of the electrode consisting of two or more materials together has also been focused on since it can provide synergetic effect such as broader working potential range and enhanced capacitance. In this work, we have used polyaniline (PANi) and manganese oxide (MnO2) as electrode materials. PANi is one of the promising electrode materials due to its high electrochemical activity, high doping level and stability. MnO2 is also widely studied material for supercapacitors since it is relatively cheap and environmentally friendly. Firstly, we synthesized polystyrene nanospheres on MnO2 nanoparticles. MnO2-incorporated PANi hollow nanospheres were then fabricated by polymerizing aniline monomers on these PS nanospheres and dissolving the inner PS spheres. The surface morphology, electronic absorption and electrical conductivity of the electrode were analyzed using field-emission scanning electron microscope (FE-SEM), UV-visible spectrometer, and sheet resistivity meter, respectively. The electrochemical properties such as capacitance of the supercapacitors were also estimated using cyclic voltammetry.

  • PDF