• Title/Summary/Keyword: Mn-Fe ferrite

Search Result 110, Processing Time 0.025 seconds

Analysis of Cracking Phenomenon Occurring During Hot Rolling of Fe-23Mn High-manganese Steels with Different Aluminium and Carbon Contents (알루미늄과 탄소 함량에 따른 Fe-23Mn계 고망간강의 열간 압연 시 발생하는 균열 현상 분석)

  • Lim, Hyeon-Seok;Lee, Seung-Wan;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2016
  • In this study, a microstructural investigation was conducted on the cracking phenonmenon occurring during hot rolling of Fe-23Mn high-manganese steels with different aluminium and carbon contents. Particular emphasis was placed on the phase stability of austenite and ferrite dependent on the chemical composition. An increase in the aluminum content promoted the formation of ferrite band structures which were easily deformed or cracked. In the steels containing high carbon contents of 0.4 wt.% or higher, on the other hand, the volume fraction and thickness of ferrite bands decreased and thus the cracking frequency was significantly reduced. Based on these findings, it is said that the microstructural evolution occurring during hot rolling of high-manganese steels with different aluminium and carbon contents plays an important role in the cracking phenomenon. To prevent the cracking, therefore, the formation of second phases such as ferrite should be minimized during the hot rolling by the appropriate control of the chemical composition and process parameters

Manganese Zinc Ferrite Singel Crystal Growth by Continuous Crystal Growing Method (연속성장법에 의한 Mn-Zn Ferrite 단결정 성장)

  • 정재우;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.7
    • /
    • pp.539-543
    • /
    • 1992
  • The continuous growth method was developed for Mn-Zn Ferrite single crystals. It is a new process that the polycrystalline MnχZn1-χFe2O4 raw materials are supplied continuously from the powder feeding system to the crucible heated by R.F. induction and melted in the crucible, and after the single crystals seed is attached to crucible's hole, the crystals are pulled downward with rotation. Growing the crystals by using the growth method different from the conventional Bridgman or Floating Zone method, we defined the factors having effect on the crystal growing through the pre-experiments. They are temperature distribution in the crucible, melt velocity according to its height, wettability between the crucible's bottom and melt. Therefore, Mn-Zn Ferrite single crystals were to be grown by attaining the appropriate melt height in the crucible, powder feeding rate, temperature gradient between the crucible and interface, crystal growing speed, and this method was confirmed to have possibility for single crystal growing.

  • PDF

A study on the properties of microwave loss of ferrite with various Fe contents in $Mn_{0.05}Mg_{11.9-2x}Fe_{4x}O_{4+r}+2wt%$Al_{2}O_{3}$ ($Mn_{0.05}Mg_{11.9-2x}Fe_{4x}O_{4+r}$+2wt%$Al_{2}O_{3}$ 조성내 Fe량 변화에 따른 마이크로파 손실 특성 연구)

  • 김성재;정명덕
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.143-148
    • /
    • 1994
  • In order to study the effect of D.C resistivity of sample on electromagnetic loss of ferrite at microwave frequency, samples were prepared for having differences in resistivity of an order of two. Microwave permeability($\mu$), permitivity($\varepsilon$) and effective linewidth(${\Delta}H_{eff}$), and ferromagnetic resonance linewidth(${\Delta}$H) were characterized. Tan${\delta}{\mu}$, tan${\delta}{\varepsilon}$ and ${\Delta}H_{eff}$ were decreased with increasing the resistivity and (${\Delta}$H) was increased with increasing Fe concentration, which was due to an increase of anisotropy magnetic field (=Ha).

  • PDF

A Brief Review of κ-Carbide in Fe-Mn-Al-C Model Alloys

  • Seol, Jae Bok
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.117-121
    • /
    • 2018
  • The multiple length scale analysis of previously designed Fe-Mn-Al-C based low-density model alloys reveals the difference in ordered ${\kappa}-carbide$, $(Fe,Mn)_3AlC_x$, between Fe-25Mn-16Al-5.2C (at%) alloy and Fe-3Mn-10Al-1.2C (at%) alloy. For the former alloy composition consisting of fully austenite grains, ${\kappa}-carbide$ showed majorly cuboidal and minorly pancake morphology and its chemical composition was not changed through aging for 24 h and 168 h at $600^{\circ}C$. Meanwhile, for the isothermally annealed ferritic alloy system for 1 hr at 500 and $600^{\circ}C$, the dramatic change in the chemical composition of needle-shape ${\kappa}-carbide$, $(Fe,Mn)_3(Fe,Al)C_x$, was found. Here we address that the compositional fluctuations in the vicinity of the carbides are significantly controlled by abutting phase, either austenite or ferrite. Namely, the cooperative ordering of carbon and Al is an important factor contributing to carbide formation in the high-Mn and high-Al alloyed austenitic steel, while the carbon and Mn for the low-Mn and high Al alloyed ferritic steel.

Properties and defects of Mn-Zn Ferrite single crystals grown by the modified process (연속 성장법으로 성장된 Mn-Zn Ferrite 단결정 특성 및 결함)

  • 정재우;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.23-33
    • /
    • 1991
  • Mn - Zn Ferrite has the natural characteristics of incongruent melting and the zinc oxide evaporation while the crystal is being grown. As a result of these, it comes into existence to be a non-uniform distribution of cations along the crystal growth axis and also Pt particles are usually precipitated into the crystals in Bridgman method since the melt zone is maintained for a long time in the crucible. These have bad effects on the magnetic properties of ferrites. But, to overcome these faults and then acquire the better single crystals. new modified growth method was developed and the growth factors were investigated as following: melt height in the crucible, surface tension and density of melt, the behavior of melt at interface, the shapes of crucible and solid -liquid interface, powder feeding rate, and the crystal growing speed. In additon, when we analyzed the compositional fluctuations of grown crystals, they were supressed within 1.5 mol% $Fe_20_3$, 2 mol% MnO, ZnO respectively with comparing to initial composition of crystal and the microstructures of crystals on the(110) plane were observed by optical microscope through the chemical etching technique and the magnetic properties were determined.

  • PDF

Influence of Cu and Ni on Ductile-Brittle Transition Behavior of Metastable Austenitic Fe-18Cr-10Mn-N Alloys (준안정 오스테나이트계 Fe-18Cr-10Mn-N 합금의 연성-취성 천이 거동에 미치는 Cu와 Ni의 영향)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.385-391
    • /
    • 2013
  • The influence of Cu and Ni on the ductile-brittle transition behavior of metastable austenitic Fe-18Cr-10Mn-N alloys with N contents below 0.5 wt.% was investigated in terms of austenite stability and microstructure. All the metastable austenitic Fe-18Cr-10Mn-N alloys exhibited a ductile-brittle transition behavior by unusual low-temperature brittle fracture, irrespective of Cu and/or Ni addition, and deformation-induced martensitic transformation occasionally occurred during Charpy impact testing at lower temperatures due to reduced austenite stability resulting from insufficient N content. The formation of deformation-induced martensite substantially increased the ductile-brittle transition temperature(DBTT) by deteriorating low-temperature toughness because the martensite was more brittle than the parent austenite phase beyond the energy absorbed during transformation, and its volume fraction was too small. On the other hand, the Cu addition to the metastable austenitic Fe-18Cr-10Mn-N alloy increased DBTT because the presence of ${\delta}$-ferrite had a negative effect on low-temperature toughness. However, the combined addition of Cu and Ni to the metastable austenitic Fe-18Cr-10Mn-N alloy decreased DBTT, compared to the sole addtion of Ni or Cu. This could be explained by the fact that the combined addition of Cu and Ni largely enhanced austenite stability, and suppressed the formation of deformation-induced martensite and ${\delta}$-ferrite in conjunction with the beneficial effect of Cu which may increase stacking fault energy, so that it allows cross-slip to occur and thus reduces the planarity of the deformation mechanism.

Physical Properties of Polycrystalline Mn2O3-Substituted LiNiBi Ferrite (Mn2O3가 LiNiBi Ferrite의 물리적 특성에 미치는 영향)

  • Koh Sae Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.655-658
    • /
    • 2004
  • Lithium ferrites are a low-cost material which have been prominent in the high frequency core industry because of their excellent temperature performance and high squareness ratio. In order to develope the lithium ferrites with the high squareness and low coercive force, the ferrites of $Li_{0.48}Bi_{0.02}Ni_{0.04}Fe_{2.46-x}O_4$ were investigated the by varying composition, temperature and frequency. Electric loss of the Li-ferrite was lowered with the substitution of $Mn_{2}O_3$. The addition of $Mn_{2}O_3$ increased the magnetic induction (Bm&Br) but decreased the coercive force (Hc) and the squareness ratio (R=Br/Bm). Also, the Br value was stable at environmental temperature variation.

The Effect of Manganese Substituted M-type Hexagonal Ba-ferrite

  • Lee, In-Kyu;Sur, Jung-Chul;Shim, In-Bo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.93-96
    • /
    • 2009
  • The Mn-substituted M-type Ba-ferrite ($BaFe_{12-x}Mn_xO_{19}$; x = 0, 2, 4, 6) powders were prepared by the HTTD (High Temperature Thermal Decomposition) method. The effect of $Mn^{3+}$ Jahn-Teller ions on the magnetic properties has been studied by x-ray diffraction, vibrating sample magnetometry, and $M{\ddot{o}}ssbauer$ spectroscopy. With increasing Mn substitution, the lattice parameter $a_0$ increases while $c_0$ decreases. The magnetocrystalline anisotropy constants ($K_1$) were determined as 2.9, 2.2, 1.8, and, $1.3{\times}10^6\;erg/cm^3$ for x = 0, 2, 4, and 6, respectively, by the LAS method. We have studied the change of cation distribution by $M{\ddot{o}}ssbauer$ spectroscopy which is closely related to $K_1$.

CEMS Study of Ferrite Films M0.2Fe2.8O4 (M =Mn, Ni, Cu) (페라이트 박막 M0.2Fe2.8O4(M=Mn, Ni, Cu)의 Mössbauer 분광학적 연구)

  • Park, Jae Yun;Kim, Kwang Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2014
  • The crystallographic properties and cationic distribution of $M_{0.2}Fe_{2.8}O_4$ (M =Mn, Ni, Cu) and $Fe_3O_4$ thin films prepared by sol-gel method have been investigated by X-ray diffraction (XRD) and conversion electron M$\ddot{o}$ssbauer spectroscopy (CEMS). The ionic valence, preferred site, and hyperfine field of Fe ions of the ferrites could be obtained by analyzing the CEMS spectra. The $M_{0.2}Fe_{2.8}O_4$ films were found to maintain cubic spinel structure as in $Fe_3O_4$ with the lattice constant slightly decreased for Ni substitution and increased for Mn and Cu substitution from that of $Fe_3O_4$. Analyses on the CEMS data indicate that $Mn^{2+}$ and $Ni^{2+}$ ions substitute octahedral $Fe^{2+}$ sites mostly, while $Cu^{2+}$ ions substitute both the octahedral and tetrahedral sites. The observed intensity ratio $A_B/A_A$ of the CEMS subspectra of the samples exhibited difference from the theoretical value. It is interpreted as due to the effect of the M substitution for A and B on the Debye temperature of the site. The relative line-broadening of the B-site CEMS subspectra can be explained by the dispersion of magnetic hyperfine fields due to random distribution of M cations in the B sites.

Composition-control of Mn-Zn Ferrite Single Crystal Using a Phase Diagram (상평형도를 이용한 Mn-Zn 페라이트 단결정 조성 조절)

  • Je, Hae-June;Kim, In-Tae;Hong, Kug-Sun
    • Analytical Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.327-332
    • /
    • 1992
  • Mn-Zn ferrite single crystals show some fluctuations in composition along the direction of growth by the conventional Bridgman method. The single crystal with a uniform composition was obtained by maintaining the liquid composition content. For example, two batches of powder were prepared : one is consisted of 52 mol% of $Fe_2O_3$, 30 mol% of MnO, and 18 mol% Zn(Composition A), and the other 53 mol% of $Fe_2O_3$, 28.5 mol% of MnO, and 18.5 mol% ZnO(Composition B). Crack-free single crystals with the uniform composition B were grown in a size of 60mm diameter, 300mm long by melting the pellets of composition A and followed by supplying the composition B as tablets. Initial permeabilities were obtained above 600 at 5 MHz in the region of 30~270 mm along the direction of growth.

  • PDF