• Title/Summary/Keyword: Mn composition

Search Result 729, Processing Time 0.031 seconds

Nanostructured Ni-Mn double hydroxide for high capacitance supercapacitor application

  • Pujari, Rahul B.;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.71-75
    • /
    • 2021
  • Recently, transition-metal-based hydroxide materials have attracted significant attention in various electrochemical applications owing to their low cost, high stability, and versatility in composition and morphology. Among these applications, transition-metal-based hydroxides have exhibited significant potential in supercapacitors owing to their multiple redox states that can considerably enhance the supercapacitance performance. In this study, nanostructured Ni-Mn double hydroxide is directly grown on a conductive substrate using an electrodeposition method. Ni-Mn double hydroxide exhibits excellent electrochemical charge-storage properties in a 1 M KOH electrolyte, such as a specific capacitance of 1364 Fg-1 at a current density of 1 mAcm-2 and a capacitance retention of 94% over 3000 charge-discharge cycles at a current density of 10 mAcm-2. The present work demonstrates a scalable, time-saving, and cost-effective approach for the preparation of Ni-Mn double hydroxide with potential application in high-charge-storage kinetics, which can also be extended for other transition-metal-based double hydroxides.

A Study on Growth and Characterization of Magnetic Semiconductor GaMnAs Using LT-MBE (저온 분자선 에피택시법을 이용한 GaMnAs 자성반도체 성장 및 특성 연구)

  • Park Jin-Bum;Koh Dongwan;Park Young Ju;Oh Hyoung-taek;Shinn Chun-Kyo;Kim Young-Mi;Park Il-Woo;Byun Dong-Jin;Lee Jung-Il
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.235-238
    • /
    • 2004
  • The LT-MBE (low temperature molecular beam epitaxy) allows to dope GaAs with Mn over its solubility limit. A 75 urn thick GaMnAs layers are grown on a low temperature grown LT-GaAs buffer layer at a substrate temperature of $260^{\circ}C$ by varying Mn contents ranged from 0.03 to 0.05. The typical growth rate for GaMnAs layer is fixed at 0.97 $\mu\textrm{m}$/h and the V/III ratio is varied from 25 to 34. The electrical and magnetic properties are investigated by Hall effect and superconducting quantum interference device(SQUID) measurements, respectively. Double crystal X-ray diffraction(DCXRD) is also performed to investigate the crystallinity of GaMnAs layers. The $T_{c}$ of the $Ga_{l-x}$ /$Mn_{x}$ As films grown by LT-MBE are enhanced from 38 K to 65 K as x increases from 0.03 into 0.05 whereas the $T_{c}$ becomes lower to 45 K when the V/III ratio increases up to 34 at the same composition of x=0.05. This means that the ferromagnetic exchange coupling between Mn-ion and a hole is affected by the growth condition of the enhanced V/III ratio in which the excess-As and As-antisite defects may be easily incorporated into GaMnAs layer.

Preparation of $Fe_{3-x}Mn_{x}O_4$ Films by the Ferrite Plating and its Magnetic Properties (Ferrite plating 방법에 의한 $Fe_{3-x}Mn_{x}O_4$ 박막 제작과 자기적 성질)

  • 하태욱;이정식
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.3
    • /
    • pp.145-150
    • /
    • 1996
  • The magnetic thin films can be prepared without vacuum process and under the low temperature ( < $100^{\circ}C$) by ferrite plating. We have performed ferrite plating of $Fe_{3-x}Mn_{x}O_4(x=0.0~0.023)$ films on glass plate at $80^{\circ}C$. We got the film $9000\AA$ in thickness, having a mirror-like luster. The composition parameter, x, in the $Fe_{3-x}Mn_{x}O_4$ films is much smaller then the corresponding on, x', in the reaction solution(x/x'=O.04). The saturation magnetization($M_{s}$) of $Fe_{3}O_{4}$ ferrite film as measured by a VSM was $M_{s}$=480 emu/cc which agrees with $Fe_{3}O_{4}$ bulk samples.

  • PDF

Exchange Anisotropy of Polycrystalline Ferromagnetic/Antiferromagnetic Bilayers

  • Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.80-93
    • /
    • 2002
  • The role of magnetic anisotropy of the antiferromagnetic layer on the magnetization process of exchange coupled polycrystalline ferromagnetidantiferromagnetic bilayers is discussed. In order to elucidate the magnetic torque response of Ni-Fe/Mn-Ir bilayers, the single spin ensemble model is newly introduced, taking into account the two-dimensionally random distribution of the magnetic anisotropy axes of the antiferromagnetic grains. The mechanism of the reversible inducement of the exchange anisotropy along desirable directions by field cooling procedure is successfully explained with the new model. Unidirectional anisotropy constant, J$k$, of polycrystalline Ni-Fe/Mn-Ir and Co-Fe/Mn-Ir bilayers is investigated as functions of the chemical composition of both the ferromagnetic layer and the antiferromagnetic layer. The effects of microstructure and surface modification of the antiferromagnetic layer on JK are also discussed. As a notable result, an extra large value of J$k$, which exceeds 0.5 erg/cm$^2$, is obtained for $Co_{70}Fe_{30}Mn_{75}Ir_{25}$ bilayer with the ultra-thin (50${\AA}$∼100${\AA}$) Mn-Ir layer. The exchange anisotropy of $Co_{70}Fe_{30}$ 40 ${\AA}/Mn_{75}Ir_{25}$ 100 ${\AA}$ bilayer is stable for thermal annealing up to $400{^{\circ}C}$, which is sufficiently high for the application of spin valve magnetoresistive devices.

Magnetization and Intrinsic Coercivity for τ-phase Mn54Al46/α-phase Fe65Co35 Composite

  • Park, Jihoon;Hong, Yang-Ki;Lee, Jaejin;Lee, Woncheol;Choi, Chul-Jin;Xu, Xia;Lane, Alan M.
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.55-58
    • /
    • 2014
  • We have synthesized ferromagnetic ${\tau}$-phase $Mn_{54}Al_{46}/{\alpha}$-phase $Fe_{65}Co_{35}$ composite by annealing a mixture of paramagnetic ${\varepsilon}$-phase $Mn_{54}Al_{46}$ and ferromagnetic ${\alpha}$-phase $Fe_{65}Co_{35}$ particles at $650^{\circ}C$. The volume fraction ($f_h$) of hard ${\tau}$-phase $Mn_{54}Al_{46}$ of the composite was varied from 0 to 1. During the annealing, magnetic phase transformation occurred from paramagnetic ${\varepsilon}$-phase to ferromagnetic ${\tau}$-phase $Mn_{54}Al_{46}$. The magnetization and coercivity of the composite monotonically decreased and increased, respectively, as the $f_h$ increased. These results are in good agreement with our proposed composition dependent coercivity and modified magnetization equations.

Structural Elucidation and Magnetical Properties of La0.5Ca0.5MnO3 Powders and Pellets (La0.5Ca0.5MnO3 분말과 Pellet의 구조분석 및 자기적 성질)

  • Jung, Miewon;Lee, Jiyun;Kim, Hyunjung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.71-75
    • /
    • 2005
  • $La_{0.5}Ca_{0.5}MnO_3$ colossal magnetoresistance (CMR) powders and pellets were synthesized by sol-gel process. The structural changes were investigated by FT-IR, CP/MAS $^{13}C$ solid state NMR spectroscopy and XRD. The particle characterization, microstructure of sintered samples, and cation composition of gel powders were studied by FE-SEM/EDS, TEM and ICP-AES. The structure refinement reveals that $La_{0.5}Ca_{0.5}MnO_3$ has orthorhombic, perovskite type unit cell. The magnetic characterizations were identified through measurement of magnetic moment by VSM.

Atmospheric Oxidation of Fe-16Cr-6Ni-6Mn-1.7Mo Stainless Steel between 700 and 900℃ (Fe-16Cr-6Ni-6Mn-1.7Mo 스테인리스 합금의 700~900℃에서의 대기중 산화)

  • Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.153-160
    • /
    • 2011
  • The AISI 216L stainless steel with a composition of Fe-16Cr-6Ni-6Mn-1.7Mo (wt.%) was oxidized at $700{\sim}900^{\circ}C$ in air for 100 h. At $700^{\circ}C$, a thin $Mn_{1.5}Cr_{1.5}O_4$ oxide layer with a thickness of $0.4{\mu}m$ formed. At $800^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $FeCr_2O_4$ oxide layer with a total thickness of $30{\mu}m$ formed. The non-adherent scale formed at $800^{\circ}C$ was susceptible to cracking. At $900^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $Mn_{1.5}Cr_{1.5}O_4$ oxide layer formed, whose total thickness was $10{\sim}15{\mu}m$. The scales formed at $900^{\circ}C$ were non-adherent and susceptible to cracking. 216 L stainless steel oxidized faster than 316 L stainless steel, owing to the increment of the Mn content and the decrement of Ni content.

Effect of Manganese Content on the Magnetic Susceptibility of Ferrous-Manganese Alloys: Correlation between Microstructure on X-Ray Diffraction and Size of the Low-Intensity Area on MRI

  • Youn, Sung Won;Kim, Moon Jung;Yi, Seounghoon;Ahn, Hyun Jin;Park, Kwan Kyu;Lee, Jongmin;Lee, Young-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.76-87
    • /
    • 2015
  • Purpose: There is an ongoing search for a stent material that produces a reduced susceptibility artifact. This study evaluated the effect of manganese (Mn) content on the MRI susceptibility artifact of ferrous-manganese (Fe-Mn) alloys, and investigated the correlation between MRI findings and measurements of Fe-Mn microstructure on X-ray diffraction (XRD). Materials and Methods: Fe-Mn binary alloys were prepared with Mn contents varying from 10% to 35% by weight (i.e., 10%, 15%, 20%, 25%, 30%, and 35%; designated as Fe-10Mn, Fe-15Mn, Fe-20Mn, Fe-25Mn, Fe-30Mn, and Fe-35Mn, respectively), and their microstructure was evaluated using XRD. Three-dimensional spoiled gradient echo sequences of cylindrical specimens were obtained in parallel and perpendicular to the static magnetic field (B0). In addition, T1-weighted spin echo, T2-weighted fast spin echo, and $T2^*$weighted gradient echo images were obtained. The size of the low-intensity area on MRI was measured for each of the Fe-Mn binary alloys prepared. Results: Three phases of ${\alpha}^{\prime}$-martensite, ${\gamma}$-austenite, and ${\varepsilon}$-martensite were seen on XRD, and their composition changed from ${\alpha}^{\prime}$-martensite to ${\gamma}$-austenite and/or ${\varepsilon}$-martensite, with increasing Mn content. The Fe-10Mn and Fe-15Mn specimens comprised ${\alpha}^{\prime}$-martensite, the Fe-20Mn and Fe-25Mn specimens comprised ${\gamma}+{\varepsilon}$ phases, and the Fe-30Mn and Fe-35Mn specimens exhibited a single ${\gamma}$ phase. The size of the low-intensity areas of Fe-Mn on MRI decreased relative to its microstructure on XRD with increasing Mn content. Conclusion: Based on these findings, proper conditioning of the Mn content in Fe-Mn alloys will improve its visibility on MR angiography, and a Mn content of more than 25% is recommended to reduce the magnetic susceptibility artifacts on MRI. A reduced artifact of Fe-Mn alloys on MRI is closely related to the paramagnetic constitution of ${\gamma}$-austenite and/or ${\varepsilon}$-martensite.

신안동전성분분석에 관한 연구(I)

  • Lee, Chang-Keun;Kang, Dae-III;Hwang, Chae-Geum
    • 보존과학연구
    • /
    • s.6
    • /
    • pp.121-196
    • /
    • 1985
  • Atomic absorption spectrophotometer was used for analyzing each 10elements(Cu, Pb, Sn, Zn, Sb, Fe, Ni, Ag, Co and Mn)on 64 Chinese coinsre covered from Shinan seabed sunken ship. The results show that Cu, Pb and Sn were found to be a major elements consisting of coins and its composition ratio was 6 to 2 to 1.The composition of trace elements on coins was classified 3 levels : Sb, Fe and Zn(0.02%-2.2%), Ag, Ni, and Co(50 ppm-5500 ppm) and Mn(Trace). Theam ount of major elements, Cu and Sn were decreased while increased in Pbby the passage of ages (10th - 13th century) in China. There seems to be no systematic compositional change in major elements but content in trace elements was confirmed to increase with age.

  • PDF

The Study on the Preparation of Fluorescence Willemite Powders by Hydrothermal, Wet and Solid State Reaction (형광성 Willemite의 수열, 습식 및 고상 합성에 관한 연구)

  • 이경희;이병하;남경호;이재영
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.74-78
    • /
    • 1991
  • Willemite powders which have been prepared by solid state reaction were easy to intermixed impurities, and particle surfaces were demaged in the progress of crushing. The above defacts were easy to accompany non-crystallization for mechanochemical effects and luminescence efficiency was deteriorated. The goal of this study improve each of defacts, and synthesize high purity and fine Mn doped willemite powders by wet and hydrothermal methods without crushing progress. It has been experimentally verified that the single phase Zn1.98Mn0.02SiO4 willemite powders which prepared by hydrothermal synthes is at 220$^{\circ}C$ for 10 hours in 2N KOH solution. The products are like needle and composition is the same with starting composition.

  • PDF