DOI QR코드

DOI QR Code

Atmospheric Oxidation of Fe-16Cr-6Ni-6Mn-1.7Mo Stainless Steel between 700 and 900℃

Fe-16Cr-6Ni-6Mn-1.7Mo 스테인리스 합금의 700~900℃에서의 대기중 산화

  • Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 이동복 (성균관대학교 신소재공학과)
  • Received : 2010.10.04
  • Published : 2011.02.25

Abstract

The AISI 216L stainless steel with a composition of Fe-16Cr-6Ni-6Mn-1.7Mo (wt.%) was oxidized at $700{\sim}900^{\circ}C$ in air for 100 h. At $700^{\circ}C$, a thin $Mn_{1.5}Cr_{1.5}O_4$ oxide layer with a thickness of $0.4{\mu}m$ formed. At $800^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $FeCr_2O_4$ oxide layer with a total thickness of $30{\mu}m$ formed. The non-adherent scale formed at $800^{\circ}C$ was susceptible to cracking. At $900^{\circ}C$, an outer thin $Fe_2O_3$ oxide layer and a thick inner $Mn_{1.5}Cr_{1.5}O_4$ oxide layer formed, whose total thickness was $10{\sim}15{\mu}m$. The scales formed at $900^{\circ}C$ were non-adherent and susceptible to cracking. 216 L stainless steel oxidized faster than 316 L stainless steel, owing to the increment of the Mn content and the decrement of Ni content.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. H. J. Jang, K. S. Yun, and C. J. Park, Kor. J. Met. Mater. 48, 741 (2010).
  2. I. S. Lee, J. Kor. Inst. Met. & Mater. 47, 716 (2009).
  3. R. L. Plaut, C. Herrera, D. M. Escriba, P. R. Rios, and A. F. Padiha, Mater. Res. 10, 453 (2007). https://doi.org/10.1590/S1516-14392007000400021
  4. V. Shankar Rao and L. K. Singhal, J. Mater. Sci. 44, 2327 (2009). https://doi.org/10.1007/s10853-008-2976-4
  5. A. Vesel, A. Drenik, M. Mozetic, A. Zalar, M. Balat- Pichelin, and M. Bele, Vacuum 82, 228 (2008).
  6. P. R. Jackson and G. R. Wallwork, Oxid. Met. 21, 135 (1984). https://doi.org/10.1007/BF00741468
  7. J. K. Jung, O. Y. Lee, Y. K. Park, D. E. Kim, K. G. Jin, S. K. Kim, and K. H. Song, J. Kor. Inst. Met. & Mater. 46, 627 (2008).
  8. R. Guillamet, J. Lopitaux, B. Hannoyer, and M. Lenglet, J. Phys. IV 3, 349 (1993).
  9. Y. Chen, Z. Liu, S. P. Ringer, Z. Tong, X. Cui, and Y. Chen, Cryst. Growth Des. 7, 2279 (2007). https://doi.org/10.1021/cg070514a
  10. S. H. Jeon, K. G. Chin, K. S. Shin, H. S. Sohn, and D. R. Kim, J. Kor. Inst. Met. & Mater. 46, 289 (2008).
  11. C. J. Wang and J. G. Duh, J. Mater. Sci. 23, 3447 (1988). https://doi.org/10.1007/BF00540477
  12. S. Y. Chen, S. L. Kuan, and W. T. Tsai, Corros. Sci. 48, 634 (2006). https://doi.org/10.1016/j.corsci.2005.02.014
  13. H. Buscail, S. El Messki, F. Riffard, S. Perrier, R. Cueff, and C. Issartel, J. Mater. Sci. 43, 6960 (2008). https://doi.org/10.1007/s10853-008-2965-7
  14. 8. A. V. C. Sobral, M. P. Hierro, F. J. Pérez, W. Ristow Jr. and C. V. Franco, Mater. Corros. 51, 791 (2000). https://doi.org/10.1002/1521-4176(200011)51:11<791::AID-MACO791>3.0.CO;2-1
  15. G. Suresh, V. R. Raju, U. Kamachi Mudali, and R. K. Dayal, Corros. Eng. Sci. Tech. 38, 309 (2003). https://doi.org/10.1179/147842203225008903
  16. D.-Y. Lin, T.-C. Chang, and G.L. Liu, Scripta Mater. 49, 855 (2003). https://doi.org/10.1016/S1359-6462(03)00481-0
  17. K.H. Lo, C.H. Shek, and J. K. L. Lai, Mater. Sci. Eng. R 65, 39 (2009). https://doi.org/10.1016/j.mser.2009.03.001