• Title/Summary/Keyword: Mn and Cu addition

Search Result 218, Processing Time 0.031 seconds

Characterization of extracellular protease from Pseudoxanthomonas sp. WD12 and WD32 (Pseudoxanthomonas sp. WD12와 WD32의 세포외 단백질분해효소 특성)

  • Cho, Woon-Dong;Oh, Ji-Sung;Roh, Dong-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.285-288
    • /
    • 2016
  • Proteolytic enzymes perform hydrolysis of the peptide bonds in the protein and most commonly use in the industry. Pseudoxanthomonas sp. WD12 and WD32 were previously isolated as protease producers from a rotten wood sample. Here, we report the secreted proteolytic enzymes. The optimum enzyme reaction temperature for the secreted crude enzyme from the strain WD12 and WD32 were $50^{\circ}C$ at pH 9.0 and $45^{\circ}C$ at pH 8.0, respectively. The enzyme activities of both strains were increased by addition of KCl, NaCl, $CaCl_2$ or $MnSO_4$, and decreased by addition of $AgNO_3$, $CuSO_4$, $FeCl_3$ or $AlCl_3$. Secreted enzymes of both strains were most strongly inhibited by addition of $FeCl_3$ or $CuSO_4$. Taken together these results, WD12 could be a candidate strain of industrial alkaline protease production.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Reaction Characteristics of Thermochemical Methane Reforming on Ferrite-Based Metal Oxide Mediums (페라이트계 금속 산화물 매체 상에서 열화학 메탄 개질 반응 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seak;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.2
    • /
    • pp.140-150
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syngas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums. The mediums, CoFZ, CuFZ, or MnFZ, were composed of the mixture of M(M=Co, Cu or Mn)-substituted ferrite as an active component and $ZrO_2$ as a binder, respectively. The WZ medium, composed of the mixture of $WO_3$ and $ZrO_2$, was also prepared to compare. With an addition of $ZrO_2$, the surface area of the mediums was slightly increased and the sintering of active components was greatly suppressed during the reduction. The higher reactivity of the reduced mediums for water splitting was confirmed by the temperature programmed reaction. From the results of the thermochemical 2-step methane reforming, the reactivity of $CH_4$ reduction and water splitting with ferrite-based metal oxide mediums was relatively higher than that with WZ, and the order of reactivity of the mediums was MnFZ>CoFZ>CuFZ>WZ.

Heavy Metal Contents of Hemibarbus labeo in Andong and Imha Reservoirs (안동.임하호에 서식하는 누치(Hemibarbus labeo)의 중금속 함량)

  • Shin, Myung-Ja;Park, Young-Mi;Lee, Jong-Eun;Seo, Eul-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.377-384
    • /
    • 2010
  • Heavy metal accumulation levels of inhabitant fish, Hemibarbus labeo in Andong and Imha reservoirs were analyzed using an inductively coupled plasma spectrometer and atomic absorption spectrometer. Heavy metal contents of H. labeo from Andong reservoir were higher than those from Imha reservoir. Likewise, relative high contents of As, Cd and Hg were detected in the tissues from Andong reservoir. Among the heavy metals, Al, As and Fe were detected with high concentration in the gill tissues but not in the muscle tissues. Also, the average content of Zn was almost similar in all tissues. In addition, high accumulated level of Al, Cr, Cu and Mn were detected in gill and kidney tissues of H. labeo from Andong reservoir. As a result, the heavy metal contents from the inhabitant fishes, H. labeo, in Andong reservoir showed higher than those in Imha reservoir. We propose that heavy metal contamination in water and in inhabitated fishes is caused from various metals derived from water and sediments in water environment of Andong reservoir.

Effect of Metal Ions on the Degradation and Adsorption of Two Cellobiohydrolases on Microcrystalline Cellulose

  • Kim, Dong Won;Jang, Yeong Heon;Kim, Chang Seok;Lee, Nam Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.716-720
    • /
    • 2001
  • To test the metal ion effect, hydrolysis experiments for two cellobiohydrolases (CBHⅠ and CBH Ⅱ) from Trichoderma reesei have been carried out in the presence of 10 mM metal ions, such as Cu++, Mn++, Ca++, Hg++, Ba++, Pb++, and Cd++. The addition of Mn++, Ba++, and Ca++(10 mM) during the hydrolysis of Avicel PH 101 caused an increase in the total reducing sugar (TRS) for CBH Ⅰ by 142, 135, and 114 percent, respectively. Those for CBH Ⅱ increased by 177, 175, and 115 percent, respectively. The Mn++ was the most stimulatory metal ion, whereas Hg++ was the most inhibitory metal ion. The adsorption experiments were performed to investigate how the influence of Mn++ and Hg++ on the hydrolysis is related to the adsorption of cellobiohydrolases on cellulose. The increase in TRS during hydrolysis by adding Mn++ caused an increase in adsorption affinity (Kad) and tightness (ΔHa). While, the decrease of TRS during hydrolysis by adding Hg++ caused a decrease in the adsorption affinity (Kad) and tightness (ΔHa). These results indicate the changes in the tightness and affinity of adsorption by adding metal ions play a crucial role in the degradation of the microcrystalline cellulose.

Effects of Alloying Elements on the Mechniacal Properties of Hardened and Austempered 3.60%C-2.50wt%Si Ductile Cast Irons (3.60wt%C-2.50wt%Si 구상흑연주철의 경화 및 오스템퍼링 처리시 기계적 성질에 미치는 합금 원소의 영향)

  • Park, Jung-Jee;Seo, Gap-Sung;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.28 no.6
    • /
    • pp.273-281
    • /
    • 2008
  • Effects of alloying elements on the mechanical properties of hardened and austempered 3.60wt%C - 2.50wt%C ductile cast iron were investigated. Strength and hardness were increased and ductility was decreased as the amount of alloying element increased. The increasing effect of copper addition on the strength was the most pronounced. The strength and hardness were greatly increased and ductility was decreased by hardening. The effect of alloying element on the mechanical properties of the hardened ductile cast iron was not so pronounced due to the high contents of C and Si. The strength and hardness of austempered ductile cast iron were greatly increased, meanwhile the difference of strength from that of hardened one was not so big. The ductility of the former was higher than that of the latter. The strength and ductility of austempered ductile cast iron with 0.25%Mn were the maximum of all Mn added ones. The maximum strength of that was obtained with the addition of 0.80wt%Cu or 2.00wt%Ni along with this amount of Mn added.

Analysis of volatile compounds and metals in essential oil and solvent extracts of Amomi Fructus (사인으로부터 추출한 정유와 용매 추출물의 휘발성 물질 및 금속성분 분석)

  • Lee, Sam-Keun;Eum, Chul Hun;Son, Chang-Gue
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.436-445
    • /
    • 2015
  • Amomi Fructus with anti-oxidative activity was chosen and essential oil was obtained by SDE (simultaneous distillation extraction), and 39 constituents were determined by GC-MS (gas chromatography-mass spectrometry). Major components were camphor, borneol acetate, borneol, D-limonene and camphene. Three solvent extracts such as hexanes, diethyl ether and methylene chloride from Amomi Fructus were obtained. These were analyzed by GC-MS and 4 more constituents were identified in addition to 39 components discovered in essential oil. Five major components such as camphor, borneol acetate, borneol, D-limonene and camphene were also detected, however the relative peak percents of those components were different from those of constituents in essential oil. To estimate the kind and the amount of materials evaporated at certain temperature and conditions from essential oil and solvent extracts, dynamic headspace apparatus was used and materials evaporated and trapped at certain conditions were analyzed by GC-MS. Recovery yield of SDE method from Amomi Fructus was measured by using camphor and standard calibration solution of camphor methanol solution and, the yield was 82.0%. Content of Hg was measured by mercury analyzer and contents of Cd, Pb, Cr, Mn, Co, Ni, Cu and Zn in Amomi Fructus, essential oils and solvent extracts were determined by ICP-MS (Inductively coupled plasma-mass spectrometer). Pb, Cd and Hg were measured in the concentration of 0.72 mg/kg, <0.10 mg/kg and 0.0023 mg/kg, respectively and these were below permission level of purity test. Contents of Mn, Cu and Zn in Amomi Fructus were 213 mg/kg, 8.29 mg/kg and 31.0 mg/kg, respectively and which were relatively higher than other metals such as Cr, Co and Ni. Metals such as Mn (0.65 ~ 9.08 mg/kg), Cu (1.16 ~ 4.40 mg/kg) and Zn (1.10 ~ 3.80 mg/kg) in essential oil and solvent extracts were detected. At this point it is not clear that the metals were cross-contaminated in the course of treating Amomi Fructus or metals were contained in Amomi Fructus. The influence evaluation toward biological model study of these metals in essential oil and solvent extracts will be needed.

The Influence of Alloying Elements Addition on the Electrical and Mechanical Properties of Cu-Ni-Si-P Alloy (Cu-Ni-Si-P 합금의 기계적 및 전기적 성질에 미치는 첨가원소의 영향)

  • Kim, Seung-Ho;Yum, Young-Jin;Park, Dong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • For connector material applications, the influence alloying elements of Mn, Cr, Fe, and Ti and cold rolling reduction on the mechanical property, electrical conductivity and bendiability of Cu-Ni-Si-P alloy was investigated. The hot rolled plates were solution treated at $980^{\circ}C$ for 1.5 h, quenched into water, cold rolled by 10% and 30% reduction in thickness, and then aged at $440{\sim}500^{\circ}C$ for 3, 4, 5 times. respectively. Cu-Ni-Si-P-x alloys cold rolled by 10 reduction before heat treatment have a good bendability compare to cold rolled by 30 reduction. Cu-3.4Ni-0.8Si-0.03P-0.1Ti shows the peak strength value of 759 MPa, an electrical conductivity of 39%IACS, an elongation of 10% and a hardness of 256 Hv aged at $440^{\circ}C$ for 6 hrs. Thus it is suitable for lead frame and connector.

Strain induced/enhanced ferromagnetism in $Mn_3Ge_2$thinfilms

  • Dung, Dang Duc;Feng, Wuwei;Thiet, Duong Van;Sin, Yu-Ri-Mi;Jo, Seong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.135-135
    • /
    • 2010
  • In Mn-Ge equilibrium phase diagram, many Mn-Ge intermetallic phases can be formed with difference structures and magnetic properties. The MnGe has the cubic structure and antiferromagnetic(AFM) with Neel temperature of 197 K. The calculation predicted that the $MnGe_2$ with $Al_2Cu$-type is hard to separate between the paramagnetic(PM) states and the AFM states because this compound displays PM and AFM configuration swith similar energy. Mn-doped Ge showed the FM with Currie temperature of 285 K for bulk samples and 116 K for thin films. In addition, the $Mn_5Ge_3$ compound has hexagonal structure and FM with Curie temperature around 296K. The $Mn_{11}Ge_8$ compound has the orthorhombic structure and Tc is low at 274 K and spin flopping transition is near to 140 K. While the bulk $Mn_3Ge_2$ exhibited tetragonal structure ($a=5.745{\AA}$;$c=13.89{\AA}$) with the FM near to 300K and AFM below 150K. However, amorphous $Mn_3Ge_2$ ($a-Mn_3Ge_2$) was reported to show spin glass behavior with spin-glass transition temperature (Tg) of 53 K. In addition, the transition of crystalline $Mn_3Ge_2$ shifts under high pressure. At the atmospheric pressure, $Mn_3Ge_2$ undergoes the magnetic phase transition from AFM to FM at 158 K. The pressure dependence of the phase transition in $Mn_3Ge_2$ has been determined up to 1 GPa. The transition was found to occur at 1 GPa and 155 K with dT/dP=-0.3K/0.1 GPa. Here report that Ferromagnetic $Mn_3Ge_2$ thin films were successfully grown on GaAs(001) and GaSb(001) substrates using molecular beam epitaxy. Our result revealed that the substrate facilitates to modify magnetic and electrical properties due to tensile/compressive strain effect. The spin-flopping transition around 145 K remained for samples grown on GaSb(001) while it completely disappeared for samples grown on GaAs(001). The antiferromagnetism below 145K changed to ferromagnetism and remained upto 327K. The saturation magnetization was found to be 1.32 and $0.23\;{\mu}B/Mn$ at 5 K for samples grown on GaAs(001) and GaSb(001), respectively.

  • PDF

Effect of Treadmill Exercise Training on the Expression of PGC-1α, GLUT-1, Tfam Proteins and Antioxydent Ezymes in Brain of STZ-Induced Diabetic Rats (트레드밀 지구성 운동이 streptozotocin으로 유발된 당뇨 흰쥐의 뇌에서 PGC-1α, GLUT-1, Tfam 단백질 및 항산화 효소(Cu, Zn-SOD, Mn-SOD)의 발현량에 미치는 영향)

  • Park, Noh-Hwan;Lee, Jin;Jung, Kook-Hyun;Choi, Bong-Am;Jang, Hyung-Chae;Lee, Suk-In;Lee, Dong-Soo;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.435-443
    • /
    • 2011
  • The purpose of this study is to identify the effects of exercise training [ET, 10~18 m/min (speed), 20~30 min (exercise duration)/a day for 5 day/wk, 6 wk) on PGC-$1{\alpha}$, GLUT-1, Tfam, Cu,Zn-SOD and Mn-SOD proteins in brain of STZ-induced diabetic rats. The male Sprague-Dawley (SD) rats were single-injected intraperitoneally with 50mg/kg of streptozotocin (STZ) to produce STZ-induced diabetic rats. Rats were divided into 3 experimental groups with 8 rats in each group, as follows: (1) non-STZ group (n=8), (2) STZ-CON group (n=8), (3) STZ-EXE group (n=8). The results of this study suggest that i) serum glucose level was significantly reduced in STZ-EXE group compared with STZ-CON group (p<0.05), ii) PGC-$1{\alpha}$ (p<0.001), mtPGC-$1{\alpha}$ (p<0.001), GLUT-1 (p<0.001), and mtTfam (p<0.001) proteins in brain of STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group, iii) Cu,Zn-SOD (p<0.001) and Mn-SOD (p<0.01) proteins in the STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group. In conclusion, the findings of the present study reveal that treadmill exercise training increases brain GLUT-1 protein level possibly through up-regulation of PGC-$1{\alpha}$ and Tfam proteins which represent key regulatory components of stimulation of brain mitochondrial biogenesis. In addition, treadmill exercise training may prevent oxidative stress by up-regulation of Cu,Zn-SOD and Mn-SOD proteins in the STZ-induced diabetic rats.