• Title/Summary/Keyword: Mn(III)

Search Result 235, Processing Time 0.023 seconds

Chromium Speciation in Cr(III) Oxidation by Mn-Oxides: Relation to the Oxidation Mechanism (망간 산화물에 의한 3가 크롬의 산화반응에 미치는 크롬 화학종들의 영향)

  • Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.89-94
    • /
    • 1998
  • Various Mn-oxides can oxidize Cr(III) to Cr(VI). Behaviors of chromium species in the oxidation system, especially on the oxide surface, are expected to control the reaction. During Cr(III) oxidation by birnessite and pyrolusite, Cr species in the reaction system were determined to elucidate their effects on the oxidation. Capacities of Cr oxidation of the two Mn-oxides were quite different. Solution pH and initial Cr(III) concentration also had significant effects on the Cr(III) oxidation by Mn-oxides. Chromium oxidation by pyrolusite was less than 5% of the oxidation by birnessite. The high crystallinity of pyrolusite could be one of the reasons and the difficulty of Cr (III) diffusion to the positive pyrolusite surface and Cr(VI) and Cr(III) adsorption seems to be other controlling factors. At pH 3, adsorption or precipitation of Cr species on the surface of birnessite were not found. Small amount of Cr(VI) adsorption was found on the surface of pyrolusite, but arty Cr precipitation on the oxide surface was not found. Therefore Cr(III) oxidation at pH 3 seems to be controlled mainly by the characteristics of Mn-oxides. Chromiun oxidation by Mn-oxides is thermodynamically more favorable at higher solution pH. However as solution pH increased Cr oxidation by birnessite was significantly inhibited. For Cr oxidation by pyrolusite, as pH increased the oxidation increased, but as Cr(III) addition increased the reaction was inhibited. Under these conditions some unidentified fraction of Cr species was found and this fraction is considered to be Cr(III) precipitation an the oxide surface. Chromium(III) precipitation on the oxide surface seems to play an important role in limiting Cr(III) oxidation by armoring the reaction surface on Mn-oxides as well as lowering Cr(III) concentration available for the oxidation reaction.

  • PDF

Effects of Different Precursors on the Surface Mn Species Over $MnO_x/TiO_2$ for Low-temperature SCR of NOx with $NH_3$

  • Kim, Jang-Hoon;Yoon, Sang-Hyun;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.29.1-29.1
    • /
    • 2011
  • The selective catalytic reduction (SCR) of $MnO_x$ with $NH_3$ is an effective method for the removal of $MnO_x$ from stationary system. The typical catalyst for this method is $V_2O_5-WO_3(MoO_3)/TiO_2$, caused by the high activity and stability. However, This catalyst is active within $300{\sim}400^{\circ}C$ and occurs the pore plugging from the deposition of ammonium sulfate salts on the catalysts surface. It needs to locate the SCR unit after the desulfurizer and electrostatic precipitator without reheating of the flue gas as well as deposition of dust on the catalyst. The manganese oxides supported on titania catalysts have attracted interest because of its high SCR activity at low temperature. The catalytic activity of $MnO_x/TiO_2$ SCR catalyst with different manganese precursors have investigated for low-temperature SCR in terms of structural, morphological, and physico-chemical analyses. The $MnO_x/TiO_2$ were prepared from three different precursors such as manganese nitrate, manganese acetate (II), and manganese acetate (III) by the sol-gel method and then it calcinated at $500^{\circ}C$ for 2 hr. The structural analysis was carried out to identify the phase transition and the change intensity of catalytic activity by various manganese precursors was analyzed by FT-IR and Raman spectroscopy. These different precursors also led to various surface Mn concentrations indicated by SEM. The Mn acetate (III) tends to be more suppressive the crystalline phase (rutile), and it has not only smaller particle size, but also better distributed than the others. It was confirmed that the catalytic activity of MA (III)-$MnO_x/TiO_2$ was the highest among them.

  • PDF

Ferromagnic Transitition Temperature of Diluted Magnetic III-V Based Semiconductor (III-V 화합물 자성 반도체의 강자성체 천이온도에 관한 연구)

  • Lee, Hwa-Yong;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.143-147
    • /
    • 2001
  • Ferromagnetism in manganese compound semiconductors open prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds. Also it addresses a question about the origin of the magnetic interactions that lead to a Curie temperature(Tc) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally suggested for transition metals in 1950, can explain Tc of $Ga_{1-x}Mn_x$ As and that of its IT-VI counterpart $Zn_{1-x}Mn_x$ Te and is used to predict materials with Tc exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin. In this article, we present not only the experimental result but calculated Curie temperature by RKKY interaction. The problem in making III-V semiconductor has been the low solubility of magnetic elements, such as manganese, in the compound, since the magnetic effects are roughly proportional to the concentration of the magnetic ions. Low solubility of magnetic elements was overcome by low-temperature nonequilibrium MBE{molecular beam epitaxy) growth, and ferromagnetic (Ga,Mn)As was realized. Magnetotransport measurements revealed that the magnetic transition temperature can be as high as 110 K for a small manganese concentration.

  • PDF

A Study on the Hydrated and Dehydrated $Mn^{2+}$-Exchanged Zeolite A ($Mn^{2+}$-치환 제올라이트 A 의 수화 및 탈수 구조에 관한 연구)

  • Jong Yul Park;Yang Kim;Un Sik Kim;Sang Gu Choi
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.623-632
    • /
    • 1989
  • The positions and interaction energies of framework atoms and water molecules of $Mn^{2+}$-exchanged zeolite A were calculated using some potential energy functions and an optimization program. The sum of interaction energies of framework atoms in dehydrated $Mn_{4,5}Na_3-A$ was approximately the same as those of thermally stable $Ca^{2+}$-or $Mg^{2+}$-exchanged zeolite A. Since $Mn^{2+}$ ions can form good coordination bonds with framework oxygens even in dehydrated state, $Mn^{2+}$-exchanged zeolite A is considered to be thermally stable. The optimized positions of framework atoms and ions in this work are agreed well with the crystallographic data. Three groups of water molecules are found in hydrated $Mn^{2+}$-exchanged zeolite A; W(I) group of water molecules having only hydrogen bonds, W(II) group coordinated to $Na^+$ ion, and W(III) group coordinated to $Mn^{2+}$ ion. The average binding energy of each group of water molecules decrease in the order of W(III) > W(II) > W(I). The activation energies in the dehydration reaction of each group of water molecules increased in accordance with their binding energy.

  • PDF

Synthesis and Characterization of Mn(Ⅲ) Chloro Complexes with Salen-Type Ligands (Mn(Ⅲ) Chloro-Salen형 리간드 착물의 합성과 특성)

  • Byeon, Jong Cheol;Han, Chung Hun;Park, Yu Cheol;Lee, Nam Ho;Baek, Jong Seok
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.3
    • /
    • pp.194-204
    • /
    • 2002
  • Aseries of novel salen-type complexes {[Mn(III)($L_{acn}$)CI]: n=1~11} containing CI- ion were obtained by reactions of the Mn(CH$_3$COO)$_2$· 4H$_2$O with the potentially tetradentate compartmental ligand {$H$_2$L_{acn}$} prepared by condensation the of one mole of diamine {ethylenediamine, 1,3-propnediamine, o-phenylenediamine and 2,2-dimethyl-1,3-propanediamine} with two moles of aldehyde {alicylaldehyde, 5-chloro-salicylaldehyde, 3,5-dichlorosalicylaldethyde, and 3,5-di-tert-butyl-2-hydroxy-benzaldehyde} in a methanol solution. The resulting salen-type lignds and their Mn(III) complexes were identified and characterized by elemental analysis, conductivity, themogravimetry and UV-VIS, IR and NMR spectroscopy.

Novel three-dimensional position analysis of the mandibular foramen in patients with skeletal class III mandibular prognathism

  • Kang, Sang-Hoon;Kim, Yeon-Ho;Won, Yu-Jin;Kim, Moon-Key
    • Imaging Science in Dentistry
    • /
    • v.46 no.2
    • /
    • pp.77-85
    • /
    • 2016
  • Purpose: To analyze the relative position of the mandibular foramina (MnFs) in patients diagnosed with skeletal class III malocclusion. Materials and Methods: Computed tomography (CT) images were collected from 85 patients. The vertical lengths of each anatomic point from the five horizontal planes passing through the MnF were measured at the coronoid process, sigmoid notch, condyle, and the gonion. The distance from the anterior ramus point to the posterior ramus point on the five horizontal planes was designated the anteroposterior horizontal distance of the ramus for each plane. The perpendicular distance from each anterior ramus point to each vertical plane through the MnF was designated the horizontal distance from the anterior ramus to the MnF. The horizontal and vertical positions were examined by regression analysis. Results: Regression analysis showed the heights of the coronoid process, sigmoid notch, and condyle for the five horizontal planes were significantly related to the height of the MnF, with the highest significance associated with the MnF-mandibular plane (coefficients of determination ($R^2$): 0.424, 0.597, and 0.604, respectively). The horizontal anteroposterior length of the ramus and the distance from the anterior ramus point to the MnF were significant by regression analysis. Conclusion: The relative position of the MnF was significantly related to the vertical heights of the sigmoid notch, coronoid process, and condyle as well as to the horizontal anteroposterior length of the ascending ramus. These findings should be clinically useful for patients with skeletal class III mandibular prognathism.