Trinuclear Mn ${ }^{\text {IIII }}$-NC-Fe ${ }^{\text {IIII }}$-CN-Mn ${ }^{\text {III }}$ Ferromagnetic System

Seong Huh, ${ }^{a,{ }^{*}}$ Kyoung-Tae Youm, Young Jun Park, Alan J. Lough, ${ }^{\dagger}$ Masaaki Ohba, ${ }^{\dagger}$ and Moo-Jin Jun ${ }^{*}$
Department of Chemistry, Yonsei University, Seoul 120-749, Korea. *E-mail: mjjun@yonsei.ac.kr; shuh@berkeley.edu
${ }^{\dagger}$ Department of Chemistry, University of Toronto, 80 St. George Street, Totronto, Ontario, Canada M5S 3H6
${ }^{\star}$ Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Received April 19, 2005
Key Words : Metallocyanides, Ferromagnetic interaction, Magnetism, Porphyrin compounds

Extended structures of magnetic centers linked by cyanides are of great importance in search of high-temperature ordering magnetic materials. ${ }^{1}$ Transition metal cyanides are generally employed to produce various $1 \mathrm{D}, 2 \mathrm{D}$ and 3D magnetic structures. ${ }^{2}$ Magnetic properties of metalloporphyrins coupled with numerous organic polynitrile bridges have been extensively studied by Miller et al. ${ }^{3}$ However, metalloporpyrin systems bridged by metallocyanides are unknown. Recently magnetic bimetallic coordination polymers containing metallocyanide bridges have been reviewed. ${ }^{4}$ The $\mathrm{M}_{\mathrm{A}}-\mathrm{CN}-\mathrm{M}_{\mathrm{B}}-\mathrm{NC}$ - linkages turned out to be very useful for designing high T_{c} complex-based magnets. Herein we describe the synthesis, characterization and temperature dependent magnetic study of new heterometallic trimer systems consisted of two cationic $\mathrm{Mn}(\mathrm{TPP})^{+}$centers connected by anionic $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ or $\mathrm{Pd}(\mathrm{CN})_{4}{ }^{2-}$, where TPP is a 5,10,15,20-tetraphenylporphine.
The reaction between equimolar amounts of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ and $[\mathrm{Mn}(\mathrm{TPP})] \mathrm{ClO}_{4}$ only afforded a discrete trimer with a $\left[\mathrm{Mn}(\mathrm{TPP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$countercation monomer, $[\mathrm{Mn}(\mathrm{TPP})$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left[\{\mathrm{Mn}(\mathrm{TPP})\}_{2}\left\{\mathrm{Fe}(\mathrm{CN})_{6}\right\}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O} \cdot 2 \mathrm{CH}_{3} \mathrm{COCH}_{3} \quad \mathbf{1}^{5}$, instead of a variety of possible chain structures. No 1D polymer was observed in repeated experiments. Similar reaction between $[\mathrm{Mn}(\mathrm{TPP})] \mathrm{ClO}_{4}$ and $\mathrm{K}_{2}\left[\mathrm{Pd}(\mathrm{CN})_{4}\right]$ produced $\left[\left\{\mathrm{Mn}(\mathrm{TPP})\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2}\left\{\mathrm{Pd}(\mathrm{CN})_{4}\right\}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \cdot 2 \mathrm{CH}_{3} \mathrm{COCH}_{3}$ 2^{6}. The different products are raised by different anionic charge between $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ and $\operatorname{Pd}(\mathrm{CN})_{4}{ }^{2-}$. However, the trinuclear structural motifs are same. Unlike organic nitrile bridging ligands, both $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ and $\mathrm{Pd}(\mathrm{CN})_{4}{ }^{2-}$ ions bridge two $\mathrm{Mn}(\mathrm{TPP})^{+}$moieties resulted in discrete heterometallic trinuclear complexes.

Both complexes were characterized by spectroscopic methods and X-ray crystallography. The IR spectra of $\mathbf{1}$ and 2 show $v(\mathrm{CN})$ bands at 2105 and $2136 \mathrm{~cm}^{-1}$, respectively. These values are shifted to lower wavenumbers relative to those of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ and $\mathrm{K}_{2}\left[\operatorname{Pd}(\mathrm{CN})_{4}\right]$, which show 2117 and $2143 \mathrm{~cm}^{-1}$, respectively. These shifts indicate successful coordinations of the metallocyanide ligands. ${ }^{7}$ The molecular structure of the anionic moiety of $\mathbf{1},\left[\{\mathrm{Mn}(\mathrm{TPP})\}_{2^{-}}\right.$ $\left.\left\{\mathrm{Fe}(\mathrm{CN})_{6}\right\}\right]^{-}$, revealed by X-ray crystallography is shown in Figure 1. Because the trimer unit of $\mathbf{1}$ is a negatively

[^0]

Figure 1. Crystal structure of an anionic trimer of 1 (30\% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Fe}(1)-\mathrm{C}(67)$ $1.928(5), \mathrm{Fe}(1)-\mathrm{C}(68) 1.945(5), \mathrm{Fe}(1)-\mathrm{C}(69) 1.945(5), \mathrm{Fe}(1) \cdots$ $\operatorname{Mn}(2)$ 4.9983(7), $\operatorname{Mn}(2)-\mathrm{N}(7)$ 2.116(3), $\mathrm{N}(7)-\mathrm{C}(67)$ 1.160(5), $\mathrm{N}(8)-\mathrm{C}(68) \quad 1.161(5), \mathrm{N}(9)-\mathrm{C}(69)$ 1.163(5); C(67)-Fe(1)-C(67) ${ }^{\#}$ 180.00 (1), C(67)-Fe(1)-Mn(2) 165.97(13), Symmetry code \#: 1-x, 1-y, 1-z.
charged, a countercation $\left[\mathrm{Mn}(\mathrm{TPP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$locates near the trimer at perpendicular direction. The angle of TPP rings of the anionic trimer cluster and the TPP ring of $[\mathrm{Mn}(\mathrm{TPP})$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$is $80.42(3)^{\circ}$ from their best fitted planes. The coordination mode of cyanide to Mn (III) highly deviates from a linearity, $\angle(\mathrm{C}(67)-\mathrm{N}(7)-\mathrm{Mn}(2))=148.4(4)^{\circ}$. The bond distances between $\mathrm{Mn}(2)$ and $\mathrm{N}(7)$ is $2.116(3) \AA$. This bending can be attributed to the $s p^{2}$ type bonding character of the cyanides proposed by a previous report. ${ }^{8}$ We believe this highly distorted structure and the size of $\mathrm{Mn}(\mathrm{TPP})^{+}$unit hinder the formation of a 1 D chain structure. ${ }^{5}$ However, the bond angle $\mathrm{Fe}(1)-\mathrm{C}(67)-\mathrm{N}(7), 177.6(4)^{\circ}$, is close to the linear value. Two acetone and eight water molecules were found in the crystal structure as solvates. They exhibited very complicated hydrogen bonds.

In addition to the ferricyanide system, we could obtain the tetracyano palladate(II) system and found that it formed a

Figure 2. Crystal structure of 2 (30\% probability). Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \operatorname{Pd}(1)-\mathrm{C}(45) 2.007(5), \operatorname{Pd}(1)-\mathrm{C}(46)$ $2.000(6), \mathrm{Mn}(1)-\mathrm{N}(5) 2.225(5), \mathrm{Mn}(1)-\mathrm{O}(1) 2.298(3), \mathrm{N}(5)-\mathrm{C}(45)$ $1.153(5), \mathrm{N}(6)-\mathrm{C}(46) \quad 1.150(5), \mathrm{C}(46)-\mathrm{Pd}(1)-\mathrm{C}(46)^{\#} \quad 180.00(1)$, C(45)-Pd(1)-C(46) 91.99(19), N(1)-Mn(1)-N(5) 89.45(14), N(3)-$\mathrm{Mn}(1)-\mathrm{N}(5) 95.40(14), \mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{N}(5) 88.04(14), \mathrm{N}(1)-\mathrm{Mn}(1)-$ O(1) 87.49(13), Symmetry code \#: -x, -y, -z.
similar discrete neutral heterotrimetallic compound instead of polymeric structures. The crystal structure of $\mathbf{2}$ is depicted in Figure 2. The $\mathrm{Mn}(\mathrm{TPP})^{+}$moieties of the trimers show highly distorted saddle-type structures in both $\mathbf{1}$ and $\mathbf{2}$. The r.m.s. deviation of the TPP ring of anionic moiety of $\mathbf{1}$ $\left[\{\mathrm{Mn}(\mathrm{TPP})\}_{2}\left\{\mathrm{Fe}(\mathrm{CN})_{6}\right\}\right]^{-}$is $0.2372 \AA$. The distance of $\mathrm{Mn}(2)$ to the best plane is $0.2080(9) \AA$. On the other hand, the r.m.s. deviation of the TPP ring of $\left[\mathrm{Mn}(\mathrm{TPP})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{+}$ moiety is only $0.0401 \AA$. For 2, the r.m.s. deviation of the TPP ring is $0.1892 \AA$.
In order to evaluate the magnetic property of $\mathbf{1}$, thermal magnetic susceptibilities of $\mathbf{1}$ were measured on a SQUID magnetometer in the temperature range 2-300 K. A plot of χ_{M} vs. T for $\mathbf{1}(\mathrm{H}=500 \mathrm{Oe})$ is shown in Figure 3, where χ_{M} is the molar magnetic susceptibility of the single crystals of the ion pair. 1 shows a ferromagnetic interaction above 24 K $\left(9.17 \mu_{\mathrm{B}}\right.$ at 24 K$)$ and drops of magnetic momentum below 24 K . The drops seem to be caused by zero-field splitting of $\mathrm{Mn}^{\text {III }}$ ions. ${ }^{5}$ However, intermolecular antiferromagnetic interactions should not be ruled out. The room temperature value, $8.36 \mu_{\mathrm{B}}\left(8.74 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}\right)$, is slightly smaller than the expected uncoupled value of $\left\{\mathrm{HS} \mathrm{Mn}^{\text {III }}+\mathrm{LS} \mathrm{Fe}^{\text {III }}+\mathrm{HS}\right.$ $\left.\mathrm{Mn}^{\mathrm{III}}\right\}$ trinuclear cluster unit and a $\mathrm{HS} \mathrm{Mn}^{\mathrm{III}}$ cationic unit, $8.66 \mu_{\mathrm{B}}\left(9.38 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}\right)$. Such a smaller value is often observed on $\mathrm{Mn}^{\text {III }}$ compounds which have small g values (<2.00). In fact, the ferromagnetic interaction between HS $\mathrm{Mn}^{\text {III }}(S=2)$ and $\mathrm{LS} \mathrm{Fe}{ }^{\text {III }}(S=1 / 2)$ through cyanide-bridge was previously observed by Miyasaka et al. and Choi et al. ${ }^{7}$ The magnetic susceptibility above 40 K of $\mathbf{1}$ follows CurieWeiss law ($\chi_{\mathrm{M}}=C /(T-\theta)$) with a positive Weiss constant, θ,

Figure 3. Temperature dependence of the magnetic susceptibility of $\mathbf{1}, \chi_{\mathrm{M}}(\bullet)$ and $\mu_{\mathrm{eff}}(\bigcirc)$.
of 12.01 K and C is $8.53 \mathrm{~cm}^{3} \mathrm{~K} \mathrm{~mol}^{-1}$. The positive Weiss constant indicates the ferromagnetic interaction between $\mathrm{Mn}^{\text {III }}$ and $\mathrm{Fe}^{\text {III }}$ centers.

In conclusion, we have prepared new metalloporphyrins bearing a metallocyanide bridging ligand and studied the thermal magnetic property of the $\mathrm{Mn}^{\text {III }}-\mathrm{NC}-\mathrm{Fe}^{\text {III }}-\mathrm{CN}-\mathrm{Mn}^{\text {III }}$ system which shows a ferromagnetic behavior above 24 K .

References

1. (a) Dunbar, K. R.; Heintz, R. A. Prog. Inorg. Chem. 1997, 45, 283. (b) Kahn, O. Nature 1999, 399, 22. (c) Ovcharenko, V. I.; Sagdeev, R. Z. Russ. Chem. Rev. 1999, 68, 345.
2. Gadet, V.; Mallah, T.; Castro, I.; Verdaguer, M.; Veillet, P. J. Am. Chem. Soc. 1992, 114, 9213.
3. Rittenberg, D. K.; Sugiura, K.-i.; Arif, A. M.; Sakata, Y.; Incarvito, C. D.; Rheingold, A. L.; Miller, J. S. Chem. Eur. J. 2000, 6, 1811.
4. Ohba, M.; Ōkawa, H. Coord. Chem. Rev. 2000, 198, 313.
5. Synthesis of 1: A solution of $\mathrm{Mn}(\mathrm{TPP}) \mathrm{ClO}_{4}(38 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 10 mL acetone was mixed with an aqueous methanol solution $(10 \mathrm{~mL})$ of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right](16.5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and the reaction mixture was subsequently heated at $60^{\circ} \mathrm{C}$ under N_{2} atmosphere for 1 h (dark condition). The resulting solution was filtered on a frit and stored at $-20^{\circ} \mathrm{C}$ for several days. Dark green platelets were obtained which were X-ray quality crystals (16 mg). Calc. for $\mathrm{C}_{144} \mathrm{H}_{116} \mathrm{FeMn}_{3} \mathrm{~N}_{18} \mathrm{O}_{12}$ (1) C, 68.87; N, 10.04; H, 4.66. Found: $\mathrm{C}, 68.57 ; \mathrm{N}, 10.46 ; \mathrm{H}, 4.35 \%$. IR (KBr, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{CN}), 2105$. M.p. $>260{ }^{\circ} \mathrm{C}$ (decomposed). CCDC 239764.
6. Synthesis of 2: A solution of $\mathrm{Mn}(\mathrm{TPP}) \mathrm{ClO}_{4}$ ($38 \mathrm{mg}, 0.05 \mathrm{mmol}$) in 20 mL acetone was mixed with an aqueous methanol solution ($30 \mathrm{~mL}, 1 / 2 \mathrm{vol} \%$) of $\mathrm{K}_{2}\left[\mathrm{Pd}(\mathrm{CN})_{4}\right](17 \mathrm{mg}, 0.05 \mathrm{mmol})$ and the reaction mixture was subsequently heated at $60^{\circ} \mathrm{C}$ under N_{2} atmosphere for 1 h (dark condition). Upon cooling of the reaction solution, small needles were grown immediately. The resulting solution was filtered on a frit and stored at $-20^{\circ} \mathrm{C}$ for 1 h . Calc. for $\mathrm{C}_{98} \mathrm{H}_{76} \mathrm{Mn}_{2} \mathrm{~N}_{12} \mathrm{O}_{6} \mathrm{Pd}(2) \mathrm{C}, 67.88 ; \mathrm{N}, 9.69 ; \mathrm{H}, 4.42$. Found: C, $68.04 ; \mathrm{N}, 10.18 ; \mathrm{H}, 4.17 \%$. IR (KBr, $\left.\mathrm{cm}^{-1}\right): v(\mathrm{CN}), 2136$. CCDC 239765.
7. (a) Miyasaka, H.; Matsumoto, N.; $\bar{O} k a w a, ~ H . ; ~ R e, ~ N . ; ~ G a l l o, ~ E . ; ~$ Floriani, C. J. Am. Chem. Soc. 1996, 118, 981. (b) Choi, H. J.; Sokol, J. J.; Long, J. R. Inorg. Chem. 2004, 43, 1606.
8. Lim, B. S.; Holm, R. H. Inorg. Chem. 1998, 37, 4898.

[^0]: ${ }^{\text {a }}$ Current Address: Department of Chemistry, University of California, Berkeley, CA 94720, USA.

