• Title/Summary/Keyword: Mixture Gas

Search Result 2,019, Processing Time 0.042 seconds

Characterization of Acetylene Plasma-Polymer Films: Recovery of Surface Hydrophobicity by Aging

  • Kim, Jeong-Ho;Kim, Tae-Hyung;Oh, Jung-Geun;Noh, Seok-Hwan;Lee, Jeong-Soo;Park, Kyu-Ho;Ha, Sam-Chul;Kang, Heon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2589-2594
    • /
    • 2009
  • Aging phenomena of plasma polymer films were studied by using the surface analysis techniques of contact angle measurement, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOFSIMS), and atomic force microscopy (AFM). The polymer films were grown on an aluminum substrate by using a plasma polymerization method from a gas mixture of acetylene and helium, and the films were subsequently modified to have a hydrophilic surface by oxygen plasma treatment. Aging of the polymer films was examined by exposing the samples to water and air environments. The aging process increased the hydrophobicity of the surface, as revealed by an increase in the advancing contact angle of water. XPS analysis showed that the population of oxygen-containing polar groups increased due to the uptake of oxygen during the aging, whereas TOF-SIMS analysis revealed a decrease in the polar group population in the uppermost surface layer. The results suggest that the change in surface property from hydrophilic to hydrophobic nature results from the restructuring of polymer chains near the surface, rather than compositional change of the surface. Oxidative degradation may enhance the mobility and the restructuring process of polymer chains.

Design of a High Efficiency Neutron Detector Using a GEM (GEM을 이용한 고효율 중성자 검출기 설계)

  • Kim, Yong-Kyun;Park, Se-Hwan;Kang, Sang-Mook;Chung, Chong-Eun
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.35-37
    • /
    • 2005
  • The radiation detector research group at KAERI has developed a high efficiency neutron detector using a Gas Electron Multiplier (GEM). The double GEM was fabricated and operated in an Ar/Isobutane mixture. For an application to a high efficiency neutron detector, $^6Li\;or\;^{10}B$ neutron converters coated on each surface of the multi GEM foils were considered. The optimized thickness of the thin film for a neutron detection was calculated with the MCNP and SRIM. The neutron efficiency was calculated by changing the chemical components of the thin film, and the thickness of the thin film. The thermalized neutrons were measured by a GEM detector with a thin neutron converter on the drift plate.

Effect of Silicon Oxynitride Matrix on the Optical Properties of Au Nanoparticles Dispersed Composite Film (실리콘 산화질화물 기지상 적용에 따른 Au 나노입자 분산 복합체 박막의 광학적 특성)

  • Cho, Sung-Hun;Lee, Kyeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.637-643
    • /
    • 2009
  • In this study, we analyzed the effect of silicon oxynitride matrix on the optical properties of Au nanoparticles dispersed on composite film and explored the effectiveness of the silicon in fine tuning the refractive index of the composite film for applications in optical waveguide devices. The atomic fraction of nitrogen in $SiO_xN_y$ films was controlled by varying the relative flow ratio of nitrogen gas in reactive sputtering and was evaluated optically using an effective medium theory with Bruggeman geometry consisting of a random mixture between $SiO_2$ and $Si_3N_4$. The Au nanoparticles were embedded in the $SiO_xN_y$ matrix by employing the alternating deposition technique and clearly showed an absorption peak due to the excitation of surface plasmon. With increasing nitrogen atomic fraction in the matrix, the surface plasmon resonance wavelength shifted to a longer wavelength (a red-shift) with an enhanced resonance absorption. These characteristics were interpreted using the Maxwell-Garnett effective medium theory. The formation of a guided mode in a slab waveguide consisting of 3 $\mu$m thick Au:$SiO_xN_y$ nanocomposite film was confirmed at the telecommunication wavelength of 1550 nm by prism coupler method and compared with the case of using $SiO_2$ matrix. The use of $SiO_xN_y$ matrix provides an effective way of controlling the mode confinement while maintaining or even enhancing the surface plasmon resonance properties.

NUMERICAL APPROACH FOR QUANTIFICATION OF SELFWASTAGE PHENOMENA IN SODIUM-COOLED FAST REACTOR

  • JANG, SUNGHYON;TAKATA, TAKASHI;YAMAGUCHI, AKIRA;UCHIBORI, AKIHIRO;KURIHARA, AKIKAZU;OHSHIMA, HIROYUKI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.700-711
    • /
    • 2015
  • Sodium-cooled fast breeder reactors use liquid sodium as a moderator and coolant to transfer heat from the reactor core. The main hazard associated with sodium is its rapid reaction with water. Sodium-water reaction (SWR) takes place when water or vapor leak into the sodium side through a crack on a heat-transfer tube in a steam generator. If the SWR continues for some time, the SWR will damage the surface of the defective area, causing it to enlarge. This self-enlargement of the crack is called "self-wastage phenomena." A stepwise numerical evaluation model of the self-wastage phenomena was devised using a computational code of multicomponent multiphase flow involving a sodium-water chemical reaction: sodiumwater reaction analysis physics of interdisciplinary multiphase flow (SERAPHIM). The temperature of gas mixture and the concentration of NaOH at the surface of the tube wall are obtained by a numerical calculation using SERAPHIM. Averaged thermophysical properties are used to assess the local wastage depth at the tube surface. By reflecting the wastage depth to the computational grid, the self-wastage phenomena are evaluated. A two-dimensional benchmark analysis of an SWAT (Sodium-Water reAction Test rig) experiment is carried out to evaluate the feasibility of the numerical model. Numerical results show that the geometry and scale of enlarged cracks show good agreement with the experimental result. Enlarged cracks appear to taper inward to a significantly smaller opening on the inside of the tube wall. The enlarged outer diameter of the crack is 4.72 mm, which shows good agreement with the experimental data (4.96 mm).

Methane-Steam Reforming Simulation for a High Temperature Solar Chemical Reactor (고온 태양열 화학 반응기에서의 메탄-수증기 개질반응 시뮬레이션)

  • Ko, Jo-Han;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Steam reforming of methane in the high temperature solar chemical reactor bas advantage in its heating method. Using concentrated solar energy as a heating source of the reforming reaction can reduce the $CO_2$ emission by 20% compared to hydrocarbon fuel. In this paper, the simulation result of methane-steam reforming on a high temperature solar chemical reactor(SCR) using Fluent 6.3.26 is presented. The high temperature SCR is designed for the Inha Dish-1, a Dish type solar concentrator installed in Songdo city. Basic SCR performance factors are referred to the former researches of the same laboratory. Inside the SCR porous metal is used for a receiver/reactor. The porous metal is carved like a dome shape on the incident side to increase the heat transfer. Also, ring-disc set of baffle is inserted in the porous metal region to increase the path length. Numerical and physical models are also used from the former researches. Methane and steam is mixed with the same mole fraction and injected into the SCR. The simulation is performed for a various inlet mass flow rate of the methane-steam mixture gas. The result shows that the average reactor temperature and the conversion rate change appreciably by the inlet mass flow rate of 0.0005 kg/s.

Effect of Acetylcholine on Electrical Activity of Cat Stomach (자율신경계에 작용하는 약물이 위장 전기도에 미치는 영향)

  • Kim, Myung-Suk;Park, Hyoung-Jin;Bai, Sun-Ho;Choi, Hyun;Kim, Chul
    • The Korean Journal of Physiology
    • /
    • v.14 no.2
    • /
    • pp.21-28
    • /
    • 1980
  • In order to investigate the effect of cholinergic substance on the electrical and the mechanical activities of the stomach muscle, 10 isolated cat stomachs were studied. At various sites of a stomach muscle preparation, the electrical activity was monopolarly recorded by using capillary electrodes containing chlorided silver wires, and the isometric contractile activity was recorded simultaneously at the terminal portion of the antrum in Krebs solution$(36^{\circ}C)$ which was aerated with a gas mixture consisting of 95% $O_2$ and 5% $CO_2$. The recording of these activities were performed before (control period) and after acetylcholine$(10^{-5}M)$ and atropine $(10^{-6}M)$ administrations serially. Following results were obtained: 1) The mean frequency of the slow wave was $4.36{\pm}0.22\;cycles/min$ at all the various sites of the cat stomach. The slow wave was propagated caudad in sequence and its velosity of propagation increased as the slow wave approached the pylorus in normal Krebs solution. 2) After acetylcholine administration, the frequency of the slow wave increased transiently and the increase of slow wave frequency was followed by the isometric contraction of antral muscle in association with the second potential which succeeded the slow wave. 3) By atropine administration, the stimulatory effect of acetylcholine on the antral muscle contraction was abolished completely, and the frequency of the slow wave decreased significantly compared with that of the control period, which tendency was more prominent in the antrum. The above results suggest that the transient increase in the frequency of gastric slow wave by acetylcholine may have some influence upon the contraction mechanism of the cat antral muscle.

  • PDF

Isolation and Characterization of Allelopathic Substances from Sorghum Stem (수수 줄기에 함유(含有)된 타감물질(他感物質)의 분리(分離) 및 특성(特性) 구명(究明))

  • Kim, S.Y.;De Datta, S.K.;Robles, R.P.;Kim, K.U.;Lee, S.C.;Shin, D.H.
    • Korean Journal of Weed Science
    • /
    • v.14 no.2
    • /
    • pp.156-162
    • /
    • 1994
  • To better understand the exact nature of the major toxic compound responsible for phytotoxicity of sorghum stem, the most toxic compound from the stem extract was isolated by rapid chromatography and subsequently purified by thin-layer chromatography(TLC) and high pressure liquid chromatography(HPLC). Of the eight fractions isolated by rapid chromatography, the fraction with solvent combinations of butanol (8) : acetic acid (1) : water (1) had the highest toxicity. Further separation of the fraction by TLC in a solvent mixture of butanol (24) : acetic acid (16.4) : water (7) : propanol (1) showed that the spot with an $R_f$ 0.71 had one major peak with retention time of 20.40 minutes. Upon subjecting gas chromatography and the HPLC fraction to the mass spectrometry, the toxic compound is probably one of the four compounds ; 1-methyl-1-(2-propynyl)-hydrazine, 1-aziridineethanol, 5-chloro-2-pentanone, and 2-(methylseleno)-ethanamine.

  • PDF

Quantification of Glycerol by Malachite Green Fading Phenomenon: Application in Reaction By-Product of Biodiesel (말라카이트 그린의 색엷음 현상을 이용한 글리세롤의 정량: 바이오디젤 내 반응물 분석의 적용 가능성)

  • Lee, Mi-Hwa;Lee, Young-Chul;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.471-476
    • /
    • 2011
  • Nowadays biodiesel (fatty acid methyl ester, FAME) has been becoming an important issue as a desired alternative of energy products because of non-toxic, biodegradable properties, and lower exhaust emissions. During esterification of fatty acids or transesterification of oils and fats with short chain alcohols by the alkali-catalyzed methanolysis, FAME and unrefined glycerol are generated. Quantification of glycerol as a by-product is important because of a determinant of biodiesel quality. However, the glycerol analysis by gas chromatography (GC) method has laborious works with sample preparation, long time and cost of sample analysis. Thus, there is a need to analyze glycerol more simply. Herein we demonstrate that the colorimetric assay for glycerol analysis conducted by UV-vis spectrophotometer at the wavelength 617 nm whose peak is maximum intensity of malachite green, resulting in the red-shift occurred proportionally as a function of glycerol amount. Thus, it is considered the solvent media for malachite green fading for biodiesel production: (1) water, (2) MeOH, and (3) EtOH. The resulting findings show that the peak intensity at 617 nm in glycerol-malachite green mixture had a relationship between glycerol concentration and degree of peak shift as increase in pure glycerol concentration approximately at pH 7.0. However, when it was measured the unrefined glycerol concentration by diluting and adjusting with water to buffer (pH 7.0), it was not observed the absorption peak at 617 nm because of impurities and OH ions. In case of glycerol from biodiesel production factories, glycerol concentration could be successfully measured.

High Yield Production of Cyclofructan by Deletion Mutant Enzyme of Cycloinulooligosaccharide Fructanotransferase (Cycloinulooligosaccharide fructanotransferase의 결손변이효소에 의한 cyclofructan의 고효율 생산)

  • Park Jung-Ha;Kwon Hyun-Ju;Kim Byung-Woo
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2006
  • This study investigated the optimal conditions of high yield production of cyclofructan (CF) using recombinant deletion mutant enzyme CFT108 which is constructed by N-terminal deletion from cycloinulooligosaccharide fructanotransferase (CFTase) gene of Penibacillus polymyxa. The production yield was dependent on reaction time, substrate concentration and enzyme concentration. The optimum reaction time for industrial purpose was achieved at 3 hr reaction. The optimal concentrations of substrate and enzyme were found to be $2\%$ inulin and 40 unit/ g inulin, respectively. At optimum condition, 9.5 g/l of maximum yield and $47.5\%$ of conversion efficacy were achieved. For purification of CF produced, the reaction mixture was treated with 1 unit/ml exoinulinase and then added $3\%$ CaO three times with blowing $CO_2$ gas, resulted in $95\%$ purity.

V-t Characteristics and 50% Flash-over Voltage of $SF_{6}-N_{2}$ Mixtures for Lightening Impulse Voltage ($SF_{6}-N_{2}$ 혼합가스에서 뇌충격전압에 의한 50[50%] Flash over 전압 및 V-t 특성)

  • 김정달;송원표;김동의
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • In this paper, we studied the 50% flashover voltage of lightening impulse which affect the most serious damages on the insulation of the electric power network system. Also its V -t characteristics and corona process phenomena of pure $SF_6, N_2, SF_6-N_2$mixtures under the circumstances of nonuniform field gap are researched. Comparing the characteristics of pure $SF_6$ with that of $SF_6, N_2$mixtures, we discussed that breakdown processes and $SF_6, N_2$ mixture's application to economics.As a results, 50% flashover voltage of $SF_6$ 50% - $N_2$ 50% for impulse voltage is higher then that of 80% of pure SF6, measured data and calculated data by equal area law are almost equal from the points of view of V-t characteristics. Therefore, it has been known that $SF_6$ 50% - $N_2$ 50% mixtures can be used as an economic constitution gas of pure $SF_6$, it is verified that corona processes from Lichtenberg figure.

  • PDF