• Title/Summary/Keyword: Mixture Characteristics

Search Result 2,933, Processing Time 0.031 seconds

Synthesis of Precipitated Calcium carbonate in Ca(OH)2-CO2-H2O System by the Continuous Drop Method of Ca(OH)2 Slurry

  • Ahn, Ji-Whan;Lee, Jae-Sung;Joo, Sung-Min;Kim, Hyung-Seok;Kim, Jong-Kuk;Han, Choon;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.327-335
    • /
    • 2002
  • Experiments were conducted to investigate the synthesis characteristics of Precipitated Calcium Carbonate(for short PCC) in Ca(OH)$_2-CO_2-H_2O$ system by the continuous drop method of Ca(OH)$_2$ slurry into the solution containing $CO_2$(aq). When the flow rate of $CO_2$(g) increases and the concentration of Ca(OH)$_2$ slurry become low, the absorption rate of $CO_2$(g) become faster than the dissolution rate of Ca(OH)$_2$. Consequently, the growth of the calcite crystal plane is facilitated resulting in synthesis of $1.0{\mu}m$ of rhombohedral calcite. On the other hand, when the flow rate of $CO_2$(g) decreases and the concentration of Ca(OH)$_2-CO_2-H_2O$ slurry become high, new nuclei is created along with the crystal growth resulting in synthesis of $0.1{\mu}m$ of prismatic calcite. Maintaining 1.0wt% of Ca(OH)$_2-CO_2-H_2O$ slurry, 120 drops/min of drop rate and $25^{circ}C$ of temperature, the shape of PCC shows colloidal and spherical agglomerate at 100 mL/min of the flow rate of $CO_2$(g); the mixture of rhombohedral and plate-shaped calcite, at 200∼500 mL/min. Therefore, as the flow rate of $CO_2$(g) increases, the shape of PCC changes from colloidal and rhombohedral calcite to plate-shaped calcite. Maintaining 500 mL/min of the flow rate of $CO_2$(g), 120 drops/min of the drop rate of Ca(OH)$_2$ slurry, and $25^{circ}C$ of temperature, the shape of PCC shows the plate-shaped calcite at 1.0∼3.0 wt% of Ca(OH)$_2$ slurry; the hexagonal plate-shape calcite of the thickness of $0.1{\mu}m$ and the width of $1.0{\mu}m$, at 4.0 wt%.

Characteristics of Water Gas Shift and Membrane Process for Pre-combustion CO2 Capture (연소전 CO2 포집을 위한 수성가스반응과 분리막 공정 특성)

  • Kim, Jeong-Nam;You, Jong-Kyun;Choi, Soo-Hyun;Baek, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Global warming due to greenhouse gas emissions is considered as a major problem worldwide, and many countries are making great efforts to reduce carbon dioxide emissions. Many technologies in post-combustion, pre-combustion and oxy-fuel combustion $CO_2$ capture have been developed. Among them, a hybrid pre-combustion $CO_2$ capture system of a water gas shift (WGS) reactor and a membrane gas separation unit was investigated. The 2 stage WGS reactor integrated high temperature shift (HTS) with a low temperature shift (LTS) was used to obtain a higher CO conversion rate. A Pd/Cu dense metal membrane was used to separate $H_2$ from $CO_2$ selectively. The performance of the hybrid system in terms of CO conversion and $H_2$ separation was evaluated using a 65% CO, 30 % $H_2$ and 5% $CO_2$ gas mixture for applications to pre-combustion $CO_2$ capture. The experiments were carried out over the range of WGS temperatures ($200-400^{\circ}C$), WGS pressures (0-20bar), Steam/Carbon (S/C) ratios (2.5-5) in a feed gas flow rate of 1 L/min. A very high CO conversion rate of 99.5% was achieved with the HTS-LTS 2 stage water gas shift reactor, and 83% $CO_2$ was concentrated in the retentate using the Pd/Cu membrane.

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators (알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성)

  • Cho, Won-Jung;Park, Eon-Sang;Jung, Ho-Seop;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.190-197
    • /
    • 2020
  • This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

Nematicidal Activity of Kojic Acid Produced by Aspergillus oryzae against Meloidogyne incognita

  • Kim, Tae Yoon;Jang, Ja Yeong;Jeon, Sun Jeong;Lee, Hye Won;Bae, Chang-Hwan;Yeo, Joo Hong;Lee, Hyang Burm;Kim, In Seon;Park, Hae Woong;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1383-1391
    • /
    • 2016
  • The fungal strain EML-DML3PNa1 isolated from leaf of white dogwood (Cornus alba L.) showed strong nematicidal activity with juvenile mortality of 87.6% at a concentration of 20% fermentation broth filtrate at 3 days after treatment. The active fungal strain was identified as Aspergillus oryzae, which belongs to section Flavi, based on the morphological characteristics and sequence analysis of the ITS rDNA, calmodulin (CaM), and β-tubulin (BenA) genes. The strain reduced the pH value to 5.62 after 7 days of incubation. Organic acid analysis revealed the presence of citric acid (515.0 mg/kg), malic acid (506.6 mg/kg), and fumaric acid (21.7 mg/kg). The three organic acids showed moderate nematicidal activities, but the mixture of citric acid, malic acid, and fumaric acid did not exhibit the full nematicidal activity of the culture filtrate of EML- DML3PNa1. Bioassay-guided fractionation coupled with 1H- and 13C-NMR and EI-MS analyses led to identification of kojic acid as the major nematicidal metabolite. Kojic acid exhibited dose-dependent mortality and inhibited the hatchability of M. incognita, showing EC50 values of 195.2 μg/ml and 238.3 μg/ml, respectively, at 72 h post-exposure. These results suggest that A. oryzae EML-DML3PNa1 and kojic acid have potential as a biological control agent against M. incognita.

An Analysis on the Research Network Structure of Convergence Technologies in Government-sponsored Research Institutes (출연연구기관 융합기술 연구네트워크 구조 분석)

  • Kim, Hongyoung;Chung, Sunyang
    • Journal of Korea Technology Innovation Society
    • /
    • v.18 no.4
    • /
    • pp.693-718
    • /
    • 2015
  • This paper examines the presence of network structures among convergence technologies focusing on national R&D projects performed by GRIs(Government-sponsored Research Institutes) in Korea. The dataset of convergence technology projects, which were conducted by 24 GRIs over 3 years (2011-2013), are analysed using the network analysis method. In this paper, a convergence technology project is defined as a project that consists of 2 or more then 2 technologies according to the intermediate classification of National Standard Classification of S&T. The research results confirm that convergence researches of government-sponsored research institutes are performed more actively than the entire convergence researches of national R&D projects. Furthermore, technological fields of GRIs' convergence projects are found to be much more varied. This paper also shows that in-house researches are more active than collaborative ones with external organizations. According to the network centrality analysis, it is identified that the network central characteristics of convergence technologies can be classified into internally oriented technologies and externally oriented technologies. Convergence technologies do not just mean simple mixture of different technologies. Therefore Korean government-sponsored research institutes should make more efforts to create convergence research areas which could generate new technologies and industries more effectively than simple multidisciplinary technology researches. From this perspective, some policy suggestions can be derived on the role of government-sponsored research institutes for activating convergence researches through the analysis of status of convergence researches and networks of institutions.

Recovery of phosphoric acid from the waste acids in semiconductor manufacturing process (반도체 제조공정에서 발생하는 혼산폐액으로부터 고순도 인산 회수)

  • Park, Sung-Kook;Roh, Yu-Mi;Lee, Sang-Gil;Kim, Ju-Yup;Shin, Chang-Hoon;Ahn, Jae-Woo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.90-94
    • /
    • 2006
  • The waste solution discharged from the LCD manufacturing process contains acids like nitric, acetic and phosphoric acid and metal ions such as Al, Mo and other impurities. It is important to removal of impurities to tess than 1ppm in phosphoric acid to reuse as an etchant because the residual impurities even in sub-ppm concentration in semiconductor materials play a major role on the electronic properties. In this study, we have been clearly established that a mixed system of solvent extraction, diffusion dialysis and ion-exchange technique, which made individually the most of characteristics is developed to commercialize in an efficient system for recovering the high-purity phosphoric acid. By applying vacuum evaporation, the yield of the process are almost 99% removal of nitric acid and acetic acid was achieved. And by applying the solvent extraction method with tri-octyl phosphate(TOP) as an extractant, the removal of acetic and nitric acid from the acid mixture was achieved effectively at the ratio O/A=1/3 with four stages and the stripping of nitric acid from organic phase is attained at a ration of O/A=1 with six stages by distilled water. About 97% and 76% removal of Al and Mo were achieved by diffusion dialysis. Essentially complete less than 1ppm removal of Al, Mo by using ion exchange ion resin and purification of the phosphoric acid was obtain.

  • PDF

State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage (사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석)

  • Kim, Jin-Seop;Kook, Donghak;Choi, Jong-Won;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than $60^{\circ}C$ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$. Neutron radiation of >$10^{19}n{\cdot}cm^{-2}$ or an integrated dose of gamma radiation exceeding $10^{10}$ rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.

Thermo-physical Properties of the Asphalt Pavement by Solar Energy (태양열 에너지에 의한 아스팔트 포장의 열전달 특성)

  • Lee, Kwan-Ho;Kim, Seong-Kyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.717-724
    • /
    • 2020
  • In general, the factors affecting the heat transfer of asphalt pavement are divided into weather factors and pavement materials. Among them, material factors include the thermophysical and surface properties. An experiment was conducted on the thermal-physical factors of asphalt, which are the basis for the pavement failure model. The thermal conductivity, specific heat capacity, thermal diffusivity, and thermal emissivity were evaluated as the thermo-physical properties of asphalt. The specimens (WC-2 & PA-13) used in the experiment were compacted with a Gyratory Compactor. The experimental results of WC-2 and PA-13 showed a thermal conductivity of 1.18W/m·K and 0.9W/m·K, specific heat capacity of 970.8J/kg·K and 960.1J/kg·K, thermal emissivity of 0.9 and 0.91, and thermal diffusivity of 5.15㎡/s and 4.66㎡/s, respectively. Experiments on the heat transfer characteristics (thermo-physical properties) of asphalt pavement that can be used for thermal failure modeling of asphalt were conducted.

Studies on Enzymatic Characteristic′s of Adenylate Kinase from Baker′s Yeast (제빵효모 Adenylate Kinase의 효소학적 특성에 관하여)

  • ;Takahisa Ohta;Hiroshi Sakai
    • Microbiology and Biotechnology Letters
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 1984
  • In the forward reaction (ADP formation) of the adenylate kinase from baker's yeast, dissociation constants from binary complexes are higher by a factor of about 4 times then those from at ternary complexes. In the reverse reaction, dissociation constants from the binary complexes are 2 times higher then those from the ternary complexes. The enzyme showed activities against various nucleotide triphospate in following orders; ATP 100, UTP 18, ITP 9 and GTP 5, of the necleotide monophosphate. only dAMP showed 33% activity of that AMP as phosphate acceptor. Divalent cations were required in enzyme reaction in following orders; $Mg^{2+}$ 100, Co$^{2+}$ 57, Mn$^{2+}$ 54, $Ca^{2+}$ 51, Ni$^{2+}$ 10 and Sn$^{2+}$ 6. AMP, as a substrate inhibitor, competitively inhibited the adenylate kinase at pH 7.2 or 8.0. Inhibition constants of the enzyme showed greater dependence on the pH of the reaction mixture, which was the lower Ki values under higher pH. Adenosine pentaphospho adenosine was competive inhibitor to the enzyme against all substrate, and it showed the same Ki values, 2.9mM. Further, PEP was competive inhibitor with respect to AMP and non-competive inhibitor with respect to MgATP. Adenylate kinase from bakers yeast was similar to mitochondrial type of animal in the contents of aianine, leucine and asparagine or asparatic acid differing from muscle type enzyme. Based on the results and observation, characteristic of yeast adenylate kinase resembled the adenylate kinase of mitochondrial type from animals. Further, difference of characteristics in adenylate kinasa depending upon the workers might be due to the difference of strain used.

  • PDF

A Study on the Preparation of Powder Coatings Containing Halogen-Free Flame Retardant and Fire Safety (Halogen-Free 난연제를 포함하는 파우더 코팅소재 제조 및 화재안전성 연구)

  • Lee, Soon-Hong;Chung, Hwa-Young;Kim, Dae-In;Noh, Tae-Joon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.47-58
    • /
    • 2011
  • Halogen free intumescent flame retardants(IFRS), such as the mixture of melamine phosphate(MP) and char forming agents(pentaerythritol(PER), di-pentaerythritol(DiPER), tris(2-hydroxyethyl) isocyanurate(THEIC)), were prepared and characterized. Polypropylene(PP)/$IFR_S$ composites were also prepared in the presence of ethylene diamine phosphate(EDAP) as a synergist and used into flame retardant PP powder coatings. Thermoplastic PP powder coatings at 20 wt% flame retardant loading were manufactured by extruded and then mechanical cryogenic crushed to bring them in fine powder form. These intumescent flame retardant powder coatings($IFRPC_S$) were applied on mild steel surface for the purpose of protection and decorative. It is a process in which a $IFRPC_S$ particles coming in contact with the preheated mild steel surface melt and form a thin coating layer. The obtained MP flame retardant was analyzed by utilizing FTIR, solid-state $^{31}P$ NMR, ICP, EA and PSA. The mechanical properties as tensile strength, melt flow index(MFI) and the thermal property as TGA/DTA and the fire safety characteristics as limiting oxygen index(LOI), UL94 test, SEM were used to investigate the effect of $IFRPC_S$. The experimental results show that the presence of $IFR_S$ considerably enhanced the fire retardant performances as evidenced by the increase of LOI values 17.3 vol% and 32.6 vol% for original PP and $IFRPC_S$-3(PP/MP-DiPER/EDAP), respectively, and a reduction in total flaming combustion time(under 15 sec) in UL94 test of $IFRPC_S$. The prepared $IFRPC_S$-3 have good comprehensive properties with fire retardancy 3.2 mm UL94 V-0 level, LOI value 32.6%, tensile strength $247.3kg/cm^2$, surface roughness Ra $0.78{\mu}m$, showing a better application prospect. Through $IFRPC_S$-2(PP/MP-PER/EDAP) and $IFRPC_S$-3 a better flame retardancy than that of the $IFRPC_S$-1(PP/MP/EDAP) was investigated which was responsible for the formed more dense and compact char layer, improved synergy effect of MP and PER/DiPER.