• 제목/요약/키워드: Mixing plane method

검색결과 45건 처리시간 0.021초

프로즌 로터 기법을 이용한 부분흡입형 터빈 수치해석 (Numerical Flow Analysis of a Partial Admission Turbine Using a Frozen Rotor Method)

  • 노준구;정은환;이은석;김진한
    • 한국유체기계학회 논문집
    • /
    • 제7권6호
    • /
    • pp.15-20
    • /
    • 2004
  • Numerical analysis of the partial admission turbine in the KARI turbopump has been performed. Flow field of the partial admission turbine is intrinsically unsteady and three dimensional. To avoid heavy computational efforts, the frozen rotor method is adopted in computation and compared with the mixing plane approach. The frozen rotor method can represent the variation of a flow field along the circumferential direction of rotor blades, which have the different relative positions to the nozzle with one another. It also illustrates the wake loss mechanism starting from the lip of a nozzle, which is not captured in the mixing plane method. The frozen rotor method has proven to be an efficient tool for the design of a partial admission turbine.

혼합층에서의 큰-크기구조의 역할 (The role of large-scale structures in mixing layers)

  • 서태원
    • 대한기계학회논문집B
    • /
    • 제22권3호
    • /
    • pp.316-325
    • /
    • 1998
  • The objective of this study is to investigate the role of large-scale coherent structures in a spatially developing plane mixing layers. To achieve this, we have to look into the mutual interactions between three-dimensional large-scale coherent structures and the mean flow. Our attention will be focused on the energy exchange mechanism between the various modes, and the effects of the nonlinear evolution of the phases of the interacting modes. Linear stability of the three-dimensional viscous shear layer is formulated and solved as the basis for the solution of the nonlinear formulation based on the energy method. The importance of the initial conditions that may affect the evolution of the flow has been examined. It has been numerically calculated the nonlinear effects arising from the interactions among the three-dimensional large-scale coherent structures in a spatially developing plane mixing layers. The results of this study provide useful parametric information for the control of shear layer in practical applications in the mixing and transport augmentation.

텐덤 디퓨저의 상대 위치에 따른 원심압축기 성능 예측 (Numerical Analysis on the Performance Prediction of a Centrifugal Compressor with Relative Positions of Tandem Diffuser Rows)

  • 노준구;김진한
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.469-475
    • /
    • 2003
  • The performance of a centrifugal compressor composed of an impeller, tandem diffuser rows and axial guide vanes has been predicted numerically and compared with available experimental results on its design rotational speed. The pitchwise-averaged mixing plane method was employed for the boundaries between rotor and stator to obtain steady state solutions. The overall characteristics showed differently according to the relative positions of tandem diffuser rows while the characteristics of impeller showed almost identical. The numerical results agree with the measured data in respect of their tendency. It turned out that 0% of relative positions is the worst case in terms of static pressure recovery and efficiency. According to the experimental results, some pressure fluctuations and malfunction of the compressor were observed for 75% case. However, this numerical calculation using mixing plane method did not capture any of those phenomena. Thus, unsteady flow calculation should be performed to investigate the stability of the compressor caused by different diffuser configuration.

  • PDF

유동함수를 이용한 난류제트혼합유동 계산에 관한 연구 (A Simple Calculational Method by using Modified Von Mises Transformation applied to the Coaxial Turbulent Jet Mixing)

  • 최동환
    • 한국추진공학회지
    • /
    • 제9권2호
    • /
    • pp.97-104
    • /
    • 2005
  • 많은 장점에도 불구하고 유동함수를 이용한 수치해석용 격자생성 좌표변환기법의 단점은 저속영역에서의 격자간격이 고속영역에 비해 상대적으로 큼에 따라 수치적 처리에 많은 오차를 내포하고 있다는 점이다. 본 연구에서는 이러한 저속영역에서의 단점을 보완하기 위하여 격자간격을 속도크기 및 영역에 따라 적절히 조절할 수 있도록 수학적으로 변형된 압축성 유동함수를 이용한 좌표변환기법을 제안하고 가스터빈엔진에 주로 적용되는 유동모델로서 동심원상 두개 이상의 난류제트혼합유동에 대해 적용하였으며 해당 실험치, 즉 축 방향 평균속도분포, 난류운동에너지, 그리고 난류전단응력분포와 비교하여 난류운동에너지가 약간 과소평가 된 대칭축을 제외한 혼합경계층 내에서 $3.5\%$ 이내의 신뢰성을 확보하였다. 본 기법은 특히 터보팬엔진에 대한 내부흐름들의 혼합유동을 규명하거나 또는 난류전단응력에 의한 제트소음발생 및 저감방법을 도모하는데 유용하게 활용될 것으로 기대된다.

CFD Analysis of a Partial Admission Turbine Using a Frozen Rotor Method

  • Noh, Jun-Gu;Lee, Eun-Seok;Kim, Jinhan;Lee, Dae-Sung
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.861-866
    • /
    • 2004
  • A numerical flow analysis has been performed on the partial admission turbine of KARI turbopump to support the aerodynamic and structural dynamic assessments. The flow-field in a partial admission turbine is essentially three dimensional and unsteady because of a tip clearance and a finite number of nozzles. Therefore the mixing plane method is generally not appropriate. To avoid heavy computational load due to an unsteady three dimensional calculation, a frozen rotor method was implemented in steady calculation. It adopted a rotating frame in the grid block of a rotor blade by adding some source terms in governing equations. Its results were compared with a mixing plane method. The frozen rotor method can detect the variation of flow-field dependent upon the blade's circumferential position relative to the nozzle. It gives a idea of wake loss mechanism starting from the lip of a nozzle. This wake loss was assumed to be one of the most difficult issues in turbine designers. Thus, the frozen rotor approach has proven to be an efficient and robust tool in design of a partial admission turbine.

  • PDF

램파 혼합 기법을 이용한 알루미늄 합금의 부식 결함 검출에 대한 실험 연구 (Experimental Study on Corrosion Detection of Aluminum Alloy Using Lamb Wave Mixing Technique)

  • 최희웅;이재선;조윤호
    • 대한기계학회논문집A
    • /
    • 제40권11호
    • /
    • pp.919-925
    • /
    • 2016
  • 본 연구에서는 비선형 체적파 혼합 기법의 선행연구를 토대로 램파 기법에 적용하여 램파 혼합 기법에 대한 연구를 수행하였다. 램파 혼합 기법의 타당성을 증명하기 위해 결함이 없는 시편과 부식에 의해 발생된 표면 결함이 있는 시편에 대해 실험을 진행하였다. 실험 대조군으로는 램파의 지배적인 면내변위와 면외변위를 가지는 모드 및 주파수로 선정하였다. 그 결과 램파 혼합 기법으로도 결함 검출이 가능하였고, 기존의 램파 기법의 경향성과 유사하게 나타났다. 그리고 이론과 동일한 지배적인 변위와 모드가 발생된 것을 확인 할 수 있었다. 그러나 결함 검출 성능은 측정 방법 및 단순 모드 선정에 따라 결정되는 것이 아니라 변위 비율에 따라 결정된다.

액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구 (Numerical Studies on the Inducer/Impeller Interaction of a Liquid Rocket Engine Turbopump System)

  • 최창호;차봉준;양수석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.33-40
    • /
    • 2002
  • The hydraulic performance analysis of a pump system composed of an inducer and impeller for the application on turbopumps has been performed using three-dimensional Wavier-Stokes equations. A simple mixing-plane method and a full interaction method are used to simulate inducer/impeller interactions. The computations adopting two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is rather small. But, because the inducer and the impeller are closely spaced near the shroud region at the interface, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicted about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with experimental ones. The computational results at the design point show good agreements with experimental data. But the computation was found to under-predict the head rise at high mass flow rates compared to the experiment, further study must be followed in terms of the computation and experiment.

  • PDF

액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구 (Numerical Studies on the Inducer/Impeller Interaction Liquid Rocket Engine Turbopump)

  • 최창호;김진한
    • 한국유체기계학회 논문집
    • /
    • 제6권4호
    • /
    • pp.50-57
    • /
    • 2003
  • The hydraulic performance analysis of a turbopump with an inducer for a liquid rocket engine was performed using three-dimensional Navier-Stokes equations. A simple mixing-plane method and a full interaction method were used to simulate inducer/impeller interaction. Two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is lather small. But, when the inducer and the impeller are closely spaced near the shroud region, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicts about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with measured ones. The computational results at the design point show good agreements with experimental data, however under-predicts the head rise at high mass flow rates compared to the experiment.

터빈의 피치 간격이 가스터빈 엔진 성능에 미치는 영향 (The Effect of Turbine Blade Pitch on the Gas Turbine Engine Performance)

  • 김재민;김귀순;최정열;정용운;황인희
    • 한국추진공학회지
    • /
    • 제12권6호
    • /
    • pp.48-55
    • /
    • 2008
  • CFD 기반으로 개발한 가스터빈 엔진 모사 프로그램을 바탕으로 간단한 엔진 모델의 성능을 모사해보았다. 2D NS 코드를 사용하여 압축기와 터빈을 모사하고, lumped method 화학 평형 코드를 사용하여 연소기를 모사하였다. 압축기, 터빈에서의 동익, 정익간의 상호 비정상 유동 현상은 mixing-plane 기법으로 정상 상태 해석을 수행하였다. 이러한 방법으로 정상 작동 상태에서의 터빈 익렬의 피치 간격이 엔진에 미치는 영향을 살펴보았다. 연구 결과, 터빈의 피치 간격이 좁아질수록 압축기는 더 높은 압력에서 작동하는 것을 확인하였다.

평행평판내 비대칭 난류유동과 열전달의 예측 (Prediction of Asymmetric Turbulent Fluid Flow and Heat Transfer in the Parallel Plates)

  • 오세경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.303-310
    • /
    • 1998
  • We report on the analytical results of examination of fully developed asymmetric flow and heat transfer between parallel plane plates. The asymmetry was introduced by roughening one of the plane while the other was left smooth. The integral method together with a turbulence model based on modified Prandtl's mixing length theory for the rough was used to determine the velocity distribution and friction. The temperature distrtibution is then predicted and heat transfer coefficients are calculated. The present paper shows that the heat transfer increases more than the friction factor for a given roughness structure. Generally the results show the strong effect of asymmetry on engineering parameters. Furthermore it is the roughness structure which influences the nature of asymmetry and heat transfer.

  • PDF