• Title/Summary/Keyword: Mixing fuel

Search Result 783, Processing Time 0.034 seconds

Study on the Mechanical Face Seal Performance for a 7-ton-Class Turbopump (7톤급 터보펌프 기계평면실의 성능 시험 연구)

  • Bae, Joonhwan;Kwak, Hyun D.;Choi, Changho
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.154-159
    • /
    • 2016
  • This paper presents an experimental study of the leakage performance and endurance performance of a mechanical face seal in the 7-ton-class turbopump of the Korea Space Launch Vehicle 2 third-stage engine. We install a mechanical face seal between the fuel pump and turbine to prevent the mixing of the fuel and turbine gas. We design and manufacture a prototype mechanical face seal, which has two parts, namely, a bellows seal assembly and mating ring. We set up a test facility to measure the leakage and endurance of the mechanical face seal. For the similarity tests, we use water under real operating conditions such as high rotational speed, high temperature, and high pressure. Through investigation of the leakage and carbon wear rate, it is possible to evaluate the performance of the mechanical face seal. The results of the leakage and endurance performance test demonstrate the absence of any leakage from the prototype mechanical face seal after a trial run and clarify that the acceptable wear rate fully satisfies the turbopump requirements. Finally, we install a qualified mechanical face seal in a 7-ton-class turbopump and perform a validation test in the turbopump real-propellant test facility in the Korea Aerospace Research Institute. The test results confirm that the mechanical face seal works well under real operating conditions.

Combustion Test and Performance Analysis of Fuel Rich Gas Generator (농후 연소 가스발생기의 연소실험과 성능해석)

  • Kwon, Sun-Tak;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.92-97
    • /
    • 2005
  • A series of combustion test was done to verify the optimization result of a gas generator for a 10 ton thrust liquid rocket engine. An injector element is F-O-F impinging type injector and the test was conducted with kerosene/LOX propellants. Test results of combustion temperature and pressure show a very good agreement with optimal design result and verify that the design method was properly established. And turbulence ring revealed its effectiveness in enhancing combustion gas mixing and temperature difference in the radial direction showed only less than 15K. Also turbulence ring induced only 3.2% pressure loss in the combustion chamber, which is far less than conventional level observed in a gas turbine engine. Axial temperature distribution also shows that turbulence ring could effectively reduce about 10% or more in gas generator length if its location is properly selected.

Characteristics of the Transverse Fuel Injection into a Supersonic Crossflow using Various Injector Geometries (분사구 형상에 따른 초음속 유동장 내 수직 연료 분사 특성)

  • Kim, Seihwan;Lee, Bok Jik;Jeung, In-Seuck;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, computational simulation was performed to investigate the characteristics of air/fuel mixing according to the shape of the injector exit when the transverse jet was injected into a supersonic flow. Non-reacting flow simulation was conducted with fixed mass flow rate and the same cross-sectional area. To validate the results, free stream Mach number and jet-to-crossflow memetum ratio are set to 3.38 and 1.4, respectively, which is same as the experimental condition. Further, separation region, structure of the under-expended jet, jet penetration height, and flammable region of hydrogen for five different injectors compared.

Preparation and Characterizations of Ferroxane-Nafion Composite Membranes for PEMFC (PEMFC용 Ferroxane-나피온 복합막의 제조 및 특성분석)

  • Shin, Mun-Sik;Oh, Gyu-Hyeon;Park, Jin-Soo
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, the organic-inorganic composite membranes composed of iron oxide (Ferroxane) and Nafion were developed as an alternative proton exchange membranes (PEMs) in proton exchange membrane fuel cell (PEMFC). Acetic acid-stabilized lepidocrocite (${\gamma}$-FeOOH) nanoparticles (ferroxane) was synthesized, and the ferroxane-Nafion composite membranes were prepared by mixing Nafion with the ferroxane. The composite membranes were investigated in terms of ionic conductivity, ion exchange capacity (IEC), FT-IR, thermal stability, etc. As a result, the ferroxane-Nafion composite membranes showed higher proton conductivity, IEC, thermal stability than Nafion recast membranes. The proton conductivity and IEC of the composite membrane with the best performance were $0.09S\;cm^{-1}$ and $0.906meq\;g^{-1}$, respectively.

How to Prepare the Manuscript for Submission to the Proceedings of KSPE Conference (비예혼합화염과 예혼합화염의 속도 섭동에 따른 응답 특성)

  • Ahn, Myunggeun;Kim, Taesung;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.612-616
    • /
    • 2017
  • An experimental study investigates the flame response characteristics of non-premixed flame and premixed flame. Air was used as the oxidant. Hydrogen($H_2$)/methane($CH_4$) was used as the fuel, and the mixing ratio of the fuel was 50/50%. Flame response characteristics for various velocity perturbations were experimented. The flame images was acquired using the OH fluorescence measurement and the images were digitized using MatLab code. The results of the premixed flame show that flame perturbation increases as the oscillation amplitude increases. As the amplitude increases, the gain value of the flame transfer function is observed to be a linear behavior. The flame length of a nonpremixed flame decreases as the oscillation amplitude increases. Also, it was confirmed that the gain value according to the amplitude behaves nonlinearly.

  • PDF

Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution (삼상 계면대에서 활성 탄소섬유로 된 연료전지 전극의 흡착 특성)

  • 박수진;정효진;나창운
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • In this work, the electrode far fuel cell was fabricated by mixing carbon blacks with activated carbon fibers (ACFs) in order to form the proper three phase distribution, and then the change of electrode in three phase distribution was investigated. Pt loading yield with ACF content and Pt particle size were determined by AAS and XRD measurements, respectively. And the pore structures, including specific surface area ($S_{BET}$), microporosity, and pore size distribution (PSD) for each electrode were systematically investigated by BET volumetric measurement. The morphology of electrode in three phase distribution was determined by SEM. As an experimental result, it was observed that Pt loading yield was not influenced on the content of ACF. While, the electrode in three phase distribution was largely improved in the case of 30% ACF addition on carbon blacks. These results were probably explained by the increase of the portion of micropores, resulting in increasing the active sites of catalyst.

Estimating the Higher Heating Value of Eco-fuel mixed Biomass with Municipal Organic Wastes from Ultimate Analysis Data (원소분석을 통한 바이오매스에 도시형 유기성 폐기물을 혼합한 신연료의 고위발열량 예측)

  • Oh, Song-Yul;Kim, Lae-Hyun;Han, Hee-Joon;Moon, Jang-Soo;Kim, Hee-Joon
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.194-201
    • /
    • 2007
  • HHV (Higher Heating Value) of biomass fuel is calculated by using ultimate analysis data and has been proposed by using correlation equation, and compared with the experiment the adequacy about each correlation equation with measured HHV and examined. Samples used for experiment are prepared by mixing biomass (i.e. rice husk and sawdust) with organic waste (i.e. polystyrene polypropylene and waste paper) of 10, 30, 50 wt% of composition. Ultimate analysis and measurement of HHV are respectively measured by using KS standard method. The average error value of estimated HHV results is about 880 kJ/kg(about 3.8% of measured HHV). The corresponding correlation coefficients ($R^2$) of experimental result and estimated HHV result are $0.957{\sim}0.996$.

Experimental study on the damping estimation of the 5$\times$5 rod bundle (5$\times$5 봉다발의 감쇄추정을 위한 실험적 연구)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.503-506
    • /
    • 2005
  • The PWR Nuclear Fuel assembly consists of more than 250 fuel rods that are supported by leaf springs in the cells of more than 10 Spacer Grids (SG) along the rod length. Since it is not easy to conduct mechanical tests on a full-scale model basis, the small-scaled rod bundle (5$\times$5) is generally used for various performance tests during the development stage. As one of the small-scaled tests, a flow test should be carried out in order to verify the performance of the spacer grid like the coolant mixing performance and to obtain the Flow-Induced Vibration (FIV) characteristics of the rod bundle over the specified flow range. A vibration test should be also performed to obtain the modal parameters of the bundle prior to the flow test. In this study, we want to develop the estimation procedure of the damping ratio for the small scaled test bundle. For the damping factor of the rod bundle and the grid case at the first vibration mode, as one of the vibration tests, a so-called pluck testing has been performed in air as a preliminary test prior to in-flow damping measurement test. Logarithmic decrement method is used for calculation of the damping ratio. Estimated damping ratio of the rod bundle is about 0.7% with reasonable error of 2% for the previous results. Nonlinear behavior of the rod bundle might be stem mainly Iron the rod-grid support configuration.

  • PDF

Effect of Particle Loading Ratio on Fluid Characteristics and Particle Distribution in Particle-laden Coaxial Jet (입자부상 동축 분사기에서 입자로딩비가 유동 특성과 입자분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.9-19
    • /
    • 2015
  • Experimental research on characteristics of particle-laden jet by using a coaxial injector was conducted in order to design fuel and oxidizer injectors of the supercavitation underwater vehicle. $1{\mu}m$ and $42{\mu}m$ particles was simultaneously injected to obtain particle and fluid velocity. Small particles($1{\mu}m$) and large particles represent fluid and fuel characteristics respectively. Small particles, which was processed using PIV algorithms, and one for the large particles processed using PTV algorithms. Fluid phase axial velocity increases according to particle loading ratio increases, and particles are located at the outside of the high vorticity region in a mixing layer of a coaxial injector.

Effect of Adding Fermented Organic Matter on the Performance of Benthic Microbial Fuel Cell (BMFC) (저생 미생물 연료전지(BMFC)의 성능에 미치는 발효 유기물 첨가 효과)

  • Lee, Mi-Hwa;Yang, Seol-Hwa;Kim, Young-Sook;Chu, Cheun-Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.486-491
    • /
    • 2022
  • A benthic microbial fuel cell (BMFC) is an eco-friendly energy conversion device that uses electricity generated by benthic microorganisms decomposing organic matter in the mud of the sea or lake. In this study, in order to understand how domestic wastewater flowing into tidal flats affects the performance of BMFC. BMFC performance was compared and reviewed by fermenting organic substances in food and mixing them with tidal flats. Performance of the BMFC was improved by 49% by adding fermented food rich in vitamins (B2, B6, B12, C, D, E) and soft flour. The maximum power density increased as the amount of fermented organic matter increased, and it was shown that the fermented organic matter fermented during 25~29 days was optimal for BMFC.